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Foreword

The first edition of the ASAI National Summer School in Artificial Intelligence
took place from July 3 - July 7, 2023, co-organized by CAIML, TU Wien and
LogiCS@TUWien; see also https://caiml.dbai.tuwien.ac.at/events/30/.

The school offered introductory courses in all areas of Artificial Intelligence,
including symbolic approaches and machine learning, but also in terms of impli-
cations of AI to society. The programme was accompanied by a panel discussion,
diversity and inclusion events, as well as the annual meeting of the Austrian So-
ciety for Artificial Intelligence (ASAI).

Applicants were expected to be at PhD level or advanced master level with
a solid background in Computer Science. We received over 60 applications from
over 10 countries, 40 of them have been selected. The school was organised as an
in-person event; national and international experts taught in half-day tutorials.
To ensure accessibility, the summer school was free of charge. In this collection
you can find summaries or abstracts of the tutorials, as well as pointers to further
literature.

In particular, this volume contains extended abstract of the following lectures:
Lukas Miklautz and Claudia Plant from the University of Vienna introduced the
students to advanced clustering techniques; Emanuel Sallinger and Georg Gottlob
from TU Wien talked about “Knowledge Graphs in Action”; Lucas Kletzander,
Florian Michek and Nysret Musliu from TU Wien gave an overview about the
use of AI in optimization problems; Gerhard Friedrich and Martin Gebser (AAU
Klagenfurt) discussed the use of logics in declarative problem-solving approaches;
knowledge engineering for graph machine learning has been the topic of the lecture
by Katja Hose, a newly hired professor at TU Wien; Erich Prem’s (eutema GmbH)
interactive class on ethical issues of AI finally raised the awareness on pressing
topics such as fairness, bias, and freedom of speech. Further lectures (abstracts
can be found at the end of this volume) ranged from Deep Learning (Günter
Klambauer), Reinforcment Learning (Clemens Heitzinger), and Brain-Inspired
Computation and Learning (Robert Legenstein). Based on the lecture by Brigtte
Krenn and Johann Petrak (OFAI), this volume also contains an extensive survey
on recent methods in Natural Language Processing.

A big thanks goes to all lecturers and to the students for their active participa-
tion. We further express our acknowledgements to Carina Zehetmaier, Jana Eder,
Gabriele Bolek-Fügl and Diana Silvestru from Women in AI Austria for organizing
an excellent session on carrer perspectives as well as to Florian Michahelles (TU
Wien), Georg Trausmuth (Frequentis), Lukas Weinwurm (IMMOunited GmbH)
and Nysret Musliu (TU Wien) for an insightful panel discussion on the potential
of AI in industry and society. This all made the summer school a big success!

Finally, we would like to thank the Austrian Society for Artificial Intelligence
(ASAI) and the City of Vienna for the kind financial support.
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Abstract. Clustering algorithms learn to categorize similar objects into
similar groups and to keep dissimilar objects apart. In this lecture, we
present advanced clustering techniques that can learn multiple alterna-
tive clusterings for a data set, leveraging the representation learning ca-
pabilities of deep neural networks. Further, we present a case study for
finding alternative clusterings of images of archaeological glass beads.
For example, the glass beads can be clustered by color, shape, size, or
decoration. These are all alternative descriptions of the data that may
be of value to archaeologists. We conclude the lecture with an outlook on
open problems in the field of deep (alternative) clustering, which should
serve as inspiration for future work.

Keywords: Deep Learning · Alternative Clustering · Archaeology · Ar-
chaeoinformatics

1 Introduction

Clustering is about finding a natural grouping of objects in data and is deeply
rooted in human cognition. Already infants can discriminate objects based on
their common characteristics [6] and our brain constantly clusters sensory stimuli
in order to recognize, monitor and interpret them. Clustering in data mining and
machine learning is about formalizing which objects should be grouped together
and which should be kept separate. The lecture comprises a theoretical part that
introduces the basic concepts of (deep) alternative clustering and a tutorial style
exploration of deep clustering methods for archaeological glass beads using the
open-source ClustPy [9] package4. The participants should get a broad overview
of alternative clustering and unsupervised deep learning techniques with practi-
cal coding examples. In the following we explain the main topics of the lecture.

2 Alternative Clustering

Automatically clustering massive data is a challenging research problem for mul-
tiple reasons. Sparse, high-dimensional and noisy data push state-of-the-art algo-
rithms to their limits. Moreover, complex data can often be clustered in multiple

4 https://github.com/collinleiber/ClustPy
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2 Miklautz and Plant

meaningful ways. For instance, objects can be clustered by their shape or alter-
natively by their color. Each grouping represents a different view of the data.

The first part of the lecture introduces solutions for finding multiple alter-
native clusterings. Starting from the classical K-means algorithm, we show how
to find multiple subspaces with alternative K-means clusterings in moderate to
high-dimensional data, using the NrKMeans algorithm [12]. A drawback of NrK-
Means is that the user needs to specify the number of alternative clusterings a
priori, which can be difficult to do in practice. The algorithm AutoNR [8] solves
this problem by automatically finding the number of alternative clusterings and
the corresponding number of clusters in each clustering using the Minimum De-
scription Length principle (MDL) [19]. MDL allows for information-theoretic
parameter estimation and is a popular framework for estimating parameters of
clustering algorithms in an unsupervised manner [3–5]. For a detailed overview
of alternative clustering algorithms see also [17].

3 Deep Clustering

Deep clustering, also called representation learning for clustering, combines ideas
from deep learning and clustering to improve clustering performance. Deep clus-
tering algorithms learn so-called “cluster-friendly”[20] representations, that in-
crease the separation between distinct groups. Many recent deep clustering meth-
ods have transferred ideas from traditional clustering to the deep learning world.
Some examples include methods for automatic estimation of the number of clus-
ters [7] or subspace-centered [13], consensus-based [16], meanshift-based [2] and
hierarchical-based [10, 11] deep clustering. For a more detailed overview on recent
methods we refer to these surveys [1, 18, 21] and this tutorial [9].5

To enable alternative clustering on very high-dimensional data, such as image
collections, we integrate the ideas of alternative clustering into deep learning. The
algorithm ENRC (Embedded Non-Redundant Clustering) [14] learns individual
embedded spaces for each clustering.6 During the training process, ENRC softly
assigns each dimension of the embedded space to the different clusterings and
jointly optimizes the clustering and the embedding. Results on image data show
that ENRC can group the objects by color, material and shape, without the
need for explicit feature engineering. This algorithm thus comes quite close to
the goal of automatically discovering multiple natural clusterings.

5 See also https://collinleiber.de/deepclustering.html for additional slides and
coding examples of [9].

6 Here, the term non-redundant clustering refers to a special case of alternative clus-
tering in which the algorithm ensures that the found clusterings are non-overlapping.
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Fig. 1. Workflow described in [15] to automatically find alternative clusterings of Me-
dieval glass beads.

4 Deep Alternative Clustering of Archaeological Glass
Beads

In the second part of the lecture, we introduce the result of our methods on
real data from archaeology. The motivation for this task is rooted in the inter-
est of archaeologists to objectively study historical artifacts. One large group
of archaeological artifacts are glass beads. They were among the most common
grave goods in the early Middle Ages and their number is estimated to be in the
millions making a manual analysis almost infeasible. The color, size, shape, pro-
duction technique and decoration of the beads are quite diverse and importantly
for our approach can be varied independently of each other. This property makes
alternative clusterings methods, like ENRC, suitable. ENRC assumes that the
different clusterings of interest are non-redundant, like the clusterings accord-
ing to colors and shapes of the glass beads. In collaboration with archaeologists
from the Austrian Academy of Sciences, we gathered and recorded images of ap-
proximately 6,000 beads of the early medieval cemetery of Vienna-Csokorgasse
and other burial grounds in Austria. Subsequently, we analysed the images us-
ing alternative clustering methods, like AutoNR and ENRC. The results in [15]
we present during the lecture are pioneering work as deep clustering methods
and alternative clustering methods have not been applied to archaeological glass
beads before. In Figure 1 we show an overview of the pipeline used in [15].

Deep Alternate Clustering 6
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5 Conclusion

Deep (alternative) clustering is still a young research field that has many open
problems suitable for future work. For example, estimating the parameters for
clustering in an end-to-end way, increasing the robustness and stability of results,
determining a good trade-off between model complexity and expressiveness or
increasing the interpretability of deep clustering methods. We believe our lec-
ture gives a good overview of the capabilities and weaknesses of current deep
clustering algorithms and we hope that we can inspire some of the participants
to tackle the existing open challenges in the future.
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Abstract. In this chapter, we are going to see Knowledge Graphs in
action. After considering the context of Knowledge Graphs, followed by
the theory and systems, we are going to explore and see in action a number
of topics, including real-world applications in finance and sustainability,
and specifically on competitor data, recycling and decentralized finance.

Keywords: Knowledge graphs · artificial intelligence · Datalog · Vadalog

1 Introduction

In this chapter, we are going to see Knowledge Graphs in action. Motivated by
the recent surge of applications [1,4,21,23,24,25,50,43], a number of real-word
applications that shall accompany us throughout the chapter, such as from finance
and sustainability, we are going to explore and see in action a number of topics:

– The context: Knowledge graphs (KGs) have in recent years gained a large
momentum both in academic research and in real-world applications. They
have become a bridge between databases, artificial intelligence (AI), data
science, the (semantic) web and semantic computing, linked data, and many
other areas. In particular, in declarative AI, they have become a bridge
between logic-based reasoning, and machine learning-based reasoning.

– The theory and systems: Languages for KGs on the one hand, and sys-
tems for KGs i.e., Knowledge Graph Management System (KGMS) on the
other hand, have garnered increasing attention. Of particular importance

⋆ This work has been supported by the Vienna Science and Technology Fund (WWTF)
[10.47379/ICT2201, 10.47379/VRG18013, 10.47379/NXT22018]; and the Christian
Doppler Research Association (CDG) JRC LIVE. Georg Gottlob is a Royal Society
Research Professor and acknowledges support by the Royal Society in this role through
the “RAISON DATA” project (Reference No. RP/R1/201074). We acknowledge the
kind support of Meltwater in this work.
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are language and system extensions such as probabilistic reasoning, numeric
reasoning, etc. - supporting various real-world applications, and the business
applications that can be built using such extensions. We are going to dive
into both theory and practice here, including the Vadalog system.

– The real-world applications: We focus on seeing Knowledge Graphs in action
through a number of real-world and business applications, including finance –
also combined with media intelligence and other settings – and sustainability.

Our focus will particularly be on seeing knowledge graphs in action. We are
going to focus on three applications for this:

– Knowledge graphs for competitor data – using KG-based reasoning for
inferring competitor relationships between companies

– Knowledge graphs for sustainability – using KGs for improving recycling
of organig waste, thus supporting a circular economy

– Knowledge graphs for decentralized finance – using KGs in the area of
derivative contracts, including additional gains in terms of transparency

There are of course many more applications “in action” than we can cover within
the limits of this chapter, such as for example web data extraction [42], data
wrangling [29,39], crisis response [5,6] and more [32].

This chapter is further structured as follows: First, we will consider briefly the
context, namely Knowledge Graphs and AI. Next, we will briefly describe theory
and systems, in particular Datalog, Vadalog, and reasoning in general. Finally,
we will cover the three applications in one section each. We will finish with a
conclusion. We note that this chapter is not primarily intended as a technical
introduction, but a way to learn about KGs and see them in action.

2 Context: Knowledge Graphs and Artificial Intelligence

Knowledge Graphs have in recent years become a critical technology that is at
the meeting point of databases, data science and artificial intelligence. There are
multiple definitions for Knowledge Graphs. In this section, we will take a broad
look, describing some of their essential characteristics. Note that this section is
not meant as a technical introduction, for this we refer to survey and technical
papers (e.g., [35,34,17,18,36]).

Technologically, Knowledge Graphs can be seen by at least these four aspects:

– As a family of data models for graph data. In particular, this family includes
RDF and its associated technologies as well as property graphs. More widely,
this includes any data model able to effectively store graphs.

– Using logical knowledge as the “knowledge” in “knowledge graphs”. This
includes families of logical and rule-based languages, including Datalog,
existential rules, etc. More widely, any knowledge representation language is
applicable to this.

Knowledge Graphs in Action: From Foundations to Applications 10
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– Using Knowledge Graph Embeddings (KGEs) to represent the latent
knowledge of Knowledge Graphs. KGEs are a broad family of machine-learning
models, including geometrical models, etc.

– Using Graph Neural Networks (GNNs) to represent the latent knowl-
edge of Knowledge Graphs. While there is no absolute division between
KGEs and GNNs, one typical distinguishing feature is that KGEs are typi-
cally transductive while GNNs are inductive. There is, however, no absolute
distinction.

More recently, it has become clear that there is a likely fifth aspect:

– The interaction of Large Language Models and KGs. This includes a
multitude of techniques, broadly divided into KGs for LLMs, LLMs for KGs
and combined approaches.

Finally, we note the connection to AI here: the latter four of the five points
we discussed are typically associated with AI techniques, while the first one is
typically associated with data management.

3 Theory and Systems: Datalog, Vadalog and Reasoning

In this chapter, we specifically showcase the application of logical knowledge in
Knowledge Graphs. Thus, we will give a high-level introduction to the logical
languages most used here. This will be a tutorial-style introduction, for a more
technical coverage we refer to respective papers (e.g., [50]).

We will specifically frequently use the language Datalog, and in particular
Datalog rules which formally are based on the language of (full) tuple-generating
dependencies, or logical rules of the form

∀x⃗, y⃗(φ(x⃗, y⃗) → ψ(x⃗))

where φ is a conjunction of relational atoms, and ψ is a single relational atom.

The usual technical notation for Datalog rules is as follows:

head(V0) :- body1(V1), body2(V2), ..., bodyN(VN).

where head and body1 to bodyN are relational atoms, where V0 to VN are lists of
variables, and where “,” denotes logical conjunction.

This language can expressive recursion naturally – e.g., by head and one body
atom coinciding. What it lacks is a way of expressing object creation, which is
added to in the language of existential rules, or tuple-generating dependencies,
of the logical form

∀x⃗, y⃗(φ(x⃗, y⃗) → ∃z⃗ψ(x⃗, z⃗))

Knowledge Graphs in Action: From Foundations to Applications 11
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The usual technical notation for such rules is unchanged, i.e., as follows:

head(V0,Z0) :- body1(V1), body2(V2), ..., bodyN(VN).

with the addition highlighted above in that the head atom, in addition to variables
V0 that are a subset of the union of V1 to VN, also contains so-called existentially
quantified variables Z0.

The language that we are going to use in most of this chapter is called Vada-
log [7], which is an extension of the above existential rules with a number of
features needed in practice. This includes the critical feature of aggregation [14],
mathematical operators, etc.

After having introduced the language, the main question is the tasks one wants
to solve with it. The typical tasks asked in the context of such logical languages
is a family of tasks called reasoning (cf. e.g. [49]). One typical such reasoning
task is query answering, i.e., returning the results of some query not only over
some given data, but over data plus the result of applying the rules.

For a formal considerations of this, we refer to the respective papers (e.g.,
[21,31,22,41]), but we do not that query answering over existential rules is in
general undecidable, hence all of the practical languages based on existential
rules, including Vadalog, put some mild restrictions over the language to achieve
decidability [3].

We remark that this chapter, focused on applications, by design does not go into
the very interesting intricacies of the theoretical foundations, such as equivalence
[47,28], the notion of limits [38], nesting of rules [37], uncertainty [13], consistency
[2], space efficiency [19], etc. For each of these, separate sections of at least this
size could be used.

4 Application of Knowledge Graphs on Competitor Data

In this section, we present a practical case study showcasing the application of
a rule-based method for inferring new company competitor pairs from existing
competitor data stored within a knowledge graph about companies. Additionally,
we demonstrate the seamless integration of the rule-based method with other
complementary processes, resulting in enhanced outcomes. This section is based
on and uses material from the papers [30,33].

In today’s global competitive environment, competitor data constitutes informa-
tion useful to many business applications, such as Competitive Intelligence, Lead
Generation, Recommender Systems, and so on. Competition-data sellers usually
maintain a manually curated database or knowledge graph containing competitor
pairs as part of a companies information system (CIS) that also maintains other
useful information about companies such as the industry sectors in which they
operate. The Owler7 knowledge graph (a.k.a., the Owler competitive graph, see
7 https://corp.owler.com/

Knowledge Graphs in Action: From Foundations to Applications 12
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the graph on the left of Fig. 1 as an example) is one of the world’s largest CIS.
It contains data about 16+ million companies crowd-sourced from over 1 million
experts. However, competitor relations in such crowd-sourced CIS are naturally
incomplete. The main goal that we target is to infer new competitor pairs from
existing competitor pairs in the Owler CIS.

Datalog programs that perform inference based on knowledge about companies
are naturally suitable for inferring new competitor pairs from existing ones in a
CIS. In this section, we present CompeGen that applies applies Vadalog [16] (a
particular variant of Datalog) rules to infer new competitor pairs from existing
ones in the Owler CIS. CompeGen combines its inference process with a “learning”
process to acquire some required logical facts and further validates the inference
results via an empirical validation process. Fig. 1 illustrates the workflow of
CompeGen, which will be detailed in the next two sections.

4.1 Knowledge-based Inference

The inference process of CompeGen uses several different types of knowledge
(represented as logical facts) about companies: (a) Competitor(A, B, s) which
represents an existing competitor pair in Owler that a company A has a competitor
of B with a proximity score s ranging from 0 (extremely unlikely to compete) to
100000 (sure competitors); (b) CompSector(C1,S1) which represents the fact that
a company identified by the company ID C1 belongs to the industry sector S1;
(c) CompatSec(S1,S2,c) which represents the fact that two sectors S1 and S2 are
compatible sectors with a sector compatibility score of c. Two sectors, S and S’,
are compatible if there are more than a certain amount of competitor pairs in each
of which one company belongs to S and the other belongs to S’ (see Section 4.2).
For example, in Figure 1, the sectors S1 and S2 are compatible. Knowledge of
types (a) and (b) comes directly from the Owler CIS while the knowledge about
sector compatibilities is learned from existing knowledge in the Owler CIS, which
is explained in the next section. Based on such knowledge, CompeGen computes
candidate competitor pairs via Vadalog, which is a particular variant of Datalog
well-suited for knowledge graphs [16]:
Cand(C1,C2,PScore):-Competitor(C1,C2,PScore).
Cand(C1,C3,PScore):-Cand(C1,C2,PS12),Competitor(C2,C3,PS23),

CompSector(C1,SEC1),CompSector(C3,SEC3),C1 != C3,
CompatSec(SEC1,SEC3,SeCoScore),Penalty(A), Cutoff(B),
PScore=max((PS12+PS23-100000-A)*SeCoScore), PScore>B.

Each candidate competitor pair (C1,C3) computed by the above program is
represented by the fact Cand(C1,C3,PScore) where PScore is a plausibility score
expressing a degree of plausibility that company C3 is a competitor of company
C1. The above Vadalog program computes a new fact Cand(C1,C3,PScore),
either if such a fact is already in the Competitor relation, or if there is an already
computed fact Cand(C1,C2,PS12) and a fact Competitor(C2,C3,PS23), where
the certain conditions are satisfied. These conditions require that C1 be different
from C3, and that the computed plausibility score PScore be larger than some
cutoff constant B (represented as Cutoff(B)), where PScore is the maximum value

Knowledge Graphs in Action: From Foundations to Applications 13
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Fig. 1: A simple example of the workflow of CompeGen.

of (PS12 + PS23 − 100000−A) × SeCoScore (SeCoScore is the compatibility
score of the sectors of C1 and of C3) over all matching choices of C2, SEC1, and
SEC3. A penalty constant A (represented as Penalty(A)), with 0 < A < 100000,
lowers the proximity scores of new candidate pairs generated by transitivity.

4.2 System Overview

The CompeGen approach can be intuitively explained via the main steps described
below.

First, at Step I , a knowledge-learning process is performed to learn the knowledge
about sector compatibilities, i.e., sector compatibility scores, from the data in the
Owler CIS. Let S be a sector and S1, . . . , Sn be all sectors such that there is at
least one competitor pair from S and Si, i.e., there is one edge from S to Si in the
competitive graph, for 1 ≤ i ≤ n. For every such Si,Ni is defined to be the number
of edges from S to Si. Let N = max1≤i≤n(Ni). Let c = 0.2 be some empirically
decided cutoff-constant. If Ni

N < c this then means that Si and S are not
compatible, and thus the compatibility weight f(S, Si) = 0. Otherwise, f(S, Si) is
calculated via an empirically determined function f(S, Si) = 1−(1− Ni

N )m, where
m = 3. A smaller m, such as 1, may cause f(S, Si) to be lower than expected,
especially when N is very large while Ni is also large but much smaller than N .
For example, when N = 20000 and Ni = 10000, f(S, Si) = 0.5 if m = 1, while
f(S, Si) = 0.875 if m = 3, and the latter is more reasonable. The compatibility
score f∗(S, Si) is the maximum of the compatibility weights f(S, Si) and f(Si, S).

Next, at Step II , candidate competitor pairs, e.g., (A,C) in Fig. 1, are generated
via the Vadalog program described in Section 4.1.

The next task (Step III ) is to validate each generated candidate competitor pair,
e.g., (A,C), against a document repository. The Web is used as the document
repository in CompeGen. A Competition Likelihood Score CLS(A,C) of A and C,
ranges from 0 (not competitors) to 1 (competitors), is determined based on the
co-occurrences of A and C in different Web pages. CLS(A,C) is calculated based
on a comparison of a number of search results for two groups of queries to the
document repository (Step III’ ): (i) a first group of queries, for co-occurrences of
names of A and of C together with names of some competitors A∗

i of A (if any),
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such as D, or some competitors C∗
i of C (if any), such as E. (ii) a second group

of queries, corresponding to the first queries, where either A or C is replaced by
random companies R(A) or R(C) from the CIS not known to be in a competitor
relationship with A or C, such as H. Examples of web pages that match these two
groups of queries are in dashed boxes labeled Q1 and Q2 , respectively. From the
average number of search results of queries in query groups (i) and (ii), denoted
by n1 and n2, respectively, a Query-result Difference Ratio (QDR) is calculated
by n1/n2 (Step III” ). Based on the QDR, the likelihood score CLS(A,C) is
calculated (Step III” ’ ) according to a predefined QDR-to-CLS lookup table, such
as T1 , whereby a higher CLS is achieved if the QDR is larger.

The final part (Step IV ) computes for each candidate pair (A,C) a final proximity
score via: fs(A,C) = PScore(A,C)+CLS(A,C)×105

2 . If (i) fs(A,C) is larger than a
given constant (e.g., 90000), and (ii) (A,C) is not already stored in the Owler
CIS with a score s ≥ fs(A,C) then (A,C) is inserted into the CIS with fs(A,C).

For more detailed introductions to CompeGen and their performance evaluations,
we recommend readers refer to the original papers [30,33].

5 Application of Knowledge Graphs on Sustainability

In this section, we present the application of knowledge graphs to the area of
sustainability, and more specifically to recycling of organic waste. This is a key
part of achieving a circular economy, which is often seen as one of the central
parts in achieving a sustainable economy and society.

As the focus in this chapter shall be on the technologies employed and their
scientific foundations, let us first consider two of the key scientific core points:

– the use of temporal reasoning for understanding the time-based patterns
critical in recycling

– the use of neuro-symbolic reasoning, that is the combination of logic-based
artificial intelligence (AI) methods and machine learning-based AI methods

Before exploring them in more detail, let us briefly discuss the extension of
Vadalog to Temporal Vadalog [8]. This in particular incorporates the operators
of a language called DatalogMTL [20,51], with “MTL” refering to the so-called
metric temporal logic.

Let us consider an example of a (simple) temporal rule. Note that we deliberately
use simplified rules for the examples, the actual ones are more complex.

green(X) :- [-](0,10) organicOnly(X).

In the above rule, we see on the left side (the head) the predicate green, indicating
that at a specific collection point X (which can be a particular garbage bin
at a house, or other waste collection point), the tour of a particular waste
collection truck is to be classified as “green” (i.e., suitable for organic waste
collection). On the right hand side we see the determination organicOnly which
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is a determination whether all the waste collected at a particular collection
point X consisted of organic waste only. This is, in the real case, determined
automatically via computer vision methods, but in our simple example can be
determined in any desirable way.

The most interesting part of the example is the operator <-> and its so-called
interval (0,10). What the operator [-] indicates is that the term after it holds
“always in the past” – the stylized box [] indicating the “always” part similar to
the modal logic box operator, and the sign “-” that it relates to the past. The
interval (0,10) modifies this by stating that the term should hold “always in
the past” but only checking the time interval starting now (0) and extending
ten time units (10) into the past. The round brackets indicate an interval that
excludes the ending points, i.e., excluding time point 0 and 10.

What this statement thus effectively says is that, if waste at a particular collection
points has been determined to be organic only for the last ten time points, then it
is classified as a “green” tour point for a waste collection truck. We do not specify
here whether the time units refer to time in the physical world, or collection events
(i.e., the last 10 collections). Neither do we go into details about the exact nature
of time – which can be integer time units, continuous time, etc. We refer the
interested reader to the respective papers for more details [20,51,53,52,48,40] and
want to particularly point at the modular open benchmark generator iTemporal
[15] for readers interested in developing approaches in this area.

Finally, we note that the real-world application consists of a combination of
logic-based AI methods (as we have seen examples here so far) and machine
learning-based AI methods [9,10,46]. In particular the ML-based AI methods are
used for recognizing the type of waste, determining the degree of certainty of
such recognitions, etc., based on image and video data.

Fig. 2: Dependency graph of the example [26].

Knowledge Graphs in Action: From Foundations to Applications 16



Knowledge Graphs in Action: From Foundations to Applications in ... 9

6 Application of Knowledge Graphs on Decentralized
Finance

In this final application, we will consider decentralized finance. The particular
application we focus on in this space is smart contracts representing financial
derivatives.

This application is also based on Temporal Vadalog and DatalogMTL, as in the
previous application. However, this time we want to consider the bigger picture,
especially given that we only considered very simple rules in the previous section.

In Figure 2 we see the overall dependency graph of the Temporal Vadalog /
DatalogMTL rules. In this graph, boxes represent predicates and arrows represent
rule applications (i.e., the tails of the arrows representing the body or bodies,
the heads of the arrows representing heads of Temporal Vadalog / DatalogMTL
rules.

The specific rules, for which we refer the interested reader to the respective paper
[26], encode the detailed temporal and non-temporal effects of a smart derivative
contract.

We still show here some examples to give a feeling for how such rules can look
like in this context, such as a simple rule propagating margin over time when no
change occurs:

margin(A,M) :- <-> margin(A,M), not changeM(A).

In the above, we see A as the account, and M as the margin. While we do not
attempt to make this a short course on finance and economics, we do note that
margin is a concept in finance relating to how much a particular account can
have negative balances resp. borrow. In terms of temporal operators, we note that
here they are used without intervals, indicating the interval from 0 to infinity
(i.e., arbitrary time periods in the past for [-] and <->). We can also consider a
rule that deals with updating margins based on deposits:

margin(A,M) :- [-] isOpen(A), <-> margin(A,X),
tranM(A,Y), M = X+Y.

where we have A as account, X as the previous margin, Y as an update to
margins, and M as the new margin. Observe that the above rule uses two
temporal operators, as well as arithmetic operators.

In summary, and the interested reader can get more details in the respective
paper, it is possible to completely model the intricacies of decentralized financial
derivatives using a combination of temporal and arithmetic reasoning in Datalog-
based Knowledge Graphs.

Finally, we remark that there are multiple interesting aspects of decentralized
finance and Knowledge Graphs that were beyond what we presented here, such as
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in smart contracts [45,44] or analyzing blockchains with Knowledge Graphs in gen-
eral [11]. Similarly interesting are applications in traditional (non-decentralized)
finance, such as anti-money laundering [12], as well as extending it to other forms
of protocols [27].

7 Conclusion

In this chapter, we have seen Knowledge Graphs in action in a number of ways.
After determining the context and introducing the theory and systems, we focused
on three exemplary applications to see “knowledge graphs in action”: first in
competitor data, then in sustainability and recycling (focusing on the small-scale
of temporal processing) and decentralized finance (focusing on the big-picture of
temporal processing).
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Abstract. Optimization problems arise in a variety of areas in indus-
try, business, engineering, health care, etc. In this tutorial, we will give
an overview of different AI methods and application areas/problems,
such as planning and scheduling, timetabling, and other optimization
problems. In the first part of the tutorial, we will discuss various case
studies and methods based on AI techniques for solving such problems.
These topics include solver-independent modeling, constraint program-
ming strategies, heuristic methods, and hybrid techniques. In the second
part of the tutorial, we will present methods that use machine learning
techniques for automatic algorithm selection and heuristic algorithm de-
sign. We will demonstrate the application of the presented techniques on
several real-world application domains.

Keywords: Artificial Intelligence · Constraint Programming · Heuristic
Methods · Hybrid Methods · Algorithm Selection.

1 Introduction

Optimization problems arise in a variety of areas of industry, business, engineer-
ing, healthcare, etc. Such problems are often very challenging and their solutions
impact the people involved as well as the efficiency and organizational cost of
operations.

Researchers in the fields of artificial intelligence and operations research
and others have proposed a range of techniques to solving optimization prob-
lems. These include constraint programming (CP) [42], answer set programming
(ASP) [3], metaheuristics [15], SAT (Boolean Satisfiability Problem) [2], integer
programming (IP) [16], and hybrid techniques [53, 50].

In this tutorial, we focus on several optimization problems that arise in the
area of planning and scheduling. We will give a partial overview of our work in
the Christian Doppler Laboratory for Artificial Intelligence and Optimization
for Planning and Scheduling (CD-Lab ARTIS) for solving diverse planning and
scheduling problems. Such problems include personnel planning and scheduling
problems, test laboratory scheduling, and production planning problems. We
will briefly describe our main approaches to solving these problems, such as CP,
metaheuristics, and hybrid techniques. In the second part of the tutorial, we will
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give a short introduction to algorithm selection, instance space analysis, and
hyper-heuristics. This part also describes some of our work in CD-Lab ARTIS
on these topics. The text in the following sections is based on our selected papers,
which are cited in these sections.

2 Constraint Programming Approaches

In CD-Lab ARTIS, we have been utilizing constraint programming for several
real-world applications. Below, we present a selection of three papers.

In [23] we deal with the extended rotating workforce scheduling (RWS) prob-
lem. Due to high practical relevance various versions of employee scheduling
problems have been investigated for several decades. The rotating workforce
scheduling problem can be classified as a single-activity tour scheduling prob-
lem with non-overlapping shifts and rotation constraints and is known to be
NP-complete.

The problem has been addressed with a range of different methods. A com-
plete method based on CP for standard RWS was introduced by [35]. It uses a
solver independent formulation in the MiniZinc constraint language [37], either
with a direct representation or using a regular automaton, and applies both the
lazy clause generation solver Chuffed and the MIP solver Gurobi. It was the first
complete method able to solve the standard benchmark set of 20 instances.

Existing work on RWS mostly deals with the standard version of the problem,
requiring any feasible solution, or delegates the selection of preferred solutions
to the user in an interactive process. While standard RWS already has practical
relevance, the extensions allow to deal with more complex issues and provide
solutions that are of higher value in real-life applications.

In several applications it can be beneficial to obtain a rotating schedule where
each employee rotates through the same sequence of shifts and days off across
several weeks, however, at different offsets within the rotation. As the design
of shift schedules highly influences the work-life balance of the employees, such
problems are subject to a wide range of constraints, dealing not only with the
demand for employees in different shifts, but also legal and organizational con-
straints that determine allowed shift assignments.

The contributions of this work are twofold. We introduce and solve a new
extended problem that includes several new additions based on the experience
from working with these problems in practice. Extensions include new constraints
for fast detection of infeasible instances, complex constraints to respect weekly
rest times, as well as soft constraints optimizing free weekends in the schedule,
turning the satisfaction problem into an optimization problem. To solve the
problem we provide a new constraint model and implement it in the constraint
modelling language MiniZinc.

Both the core model and the extended models are then evaluated on a stan-
dard set of benchmark instances based on real-life examples using the constraint
solver Chuffed and compared to recent literature. The results show that the ex-
tended models greatly improve the handling of infeasible instances and allow
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to incorporate complex rest time constraints and optimization goals providing
optimal solutions for the majority of the benchmark instances in short compu-
tational time. With our work we further improve the state-of-the-art solver for
rotating workforce scheduling and enable this solver to be used in more complex
real-life situations.

The paper [12] presents a work which was done at the beginning of the
pandemic in 2020. We consider a real-world problem occurring in the St. Anna
Children’s Hospital in Vienna, where the normal scheduling procedures had to be
rapidly adapted due to an ongoing pandemic. In addition to ordinary operational
requirements, we also need to take additional constraints about infection risk into
account. For example, it would be unwise for doctors to change their assigned
stations frequently, as they would risk coming into contact with more of their
colleagues and more patients. Also, an important goal is to maintain a low total
number of working doctors to reduce unnecessary infection risk and keep some
physicians in reserve to cover for colleagues in quarantine.

Recently, the emergency scenarios during the pandemic have been considered
in the pharmaceutical industry and for nurse rostering. However, in this paper we
focus on a new physician scheduling problem, which to the best of our knowledge
includes unique features and pandemic related constraints.

To produce schedules that can deal with these new and complex requirements,
we developed a CP model that allowed us to quickly prototype a model and adapt
it to changing requirements. CP approaches have been applied for other physician
scheduling and related problems, although without consideration of pandemic-
related constraints. We also included several redundant constraints to the model
and evaluated it on several state-of-the-art CP and mixed integer programming
(MIP) solvers. We were able to quickly find high-quality solutions under several
different configurations. Our model was used to produce the schedule for the
physicians in two hospital wards of the St. Anna Children’s hospital. We show
that the additional constraints can help in reducing the contacts both between
physicians and with their patients, compared to work schedules generated under
normal conditions.

In [14] we investigate solving a real-world project scheduling problem that
arises in an industrial test laboratory. Industrial Test Laboratory Scheduling
(TLSP) [28] is an extension of the well known Resource-Constrained Project
Scheduling Problem (RCPSP). It consists of a grouping stage, where smaller
activities (tasks) are joined into larger jobs, and a scheduling stage, where those
jobs are scheduled and have resources assigned to them. In this work, we deal
with the second stage and assume that a grouping of tasks into jobs is already
provided. Since we focus on the scheduling part, we denote the resulting problem
TLSP-S.

The investigated problem has several features of previous project scheduling
problems in the literature, but also includes some specific features imposed by
the real-world situation, which have rarely been studied before. Among others,
these include heterogeneous resources, with availability restrictions on the activ-
ities each unit of a resource can perform. While work using similar restrictions
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exists, most problem formulations either assume homogeneous, identical units
of each resource or introduce additional activity modes for each feasible assign-
ment, which quickly becomes impractical for higher resource requirements and
multiple resources. Another specific feature of TLSP(-S) is that of linked activ-
ities, which require identical assignments on a subset of the resources. We also
deal with several non-standard objectives instead of the usual makespan mini-
mization, which arise from various business objectives of our industrial partner.
Most notably, we try to minimize the total completion time of each project, i.e.
the time between the start of the first and the end of the last job in the project.

In practice, exact solutions for this problem are desired especially in situ-
ations where it is necessary to check if a feasible solution exists at all. In the
application that we consider, checking quickly if activities of additional projects
can be added on top of an existing schedule is very important. In this paper we
investigate exact methods for solving this problem.

We provide a CP model for our problem by exploiting some previous ideas
for a similar problem from [51, 62] and extend it to model the additional features
of TLSP-S. This includes, for example, the handling of the problem specific dif-
ferences discussed above but also new redundant constraints as well as search
procedures tailored to the problem. Using the MiniZinc [37] constraint program-
ming language we experiment with various strategies involving the formulation
of resource constraints, the reduction of the search space, and search procedures
based on heuristics.

Our final experiments show that constraint programming techniques can
reach very good results for realistic instances and outperform MIP solvers on
the same model. Our results strengthen the conclusion of previous studies and
show that CP technology can be applied successfully for solving large project
scheduling problems.

In addition to the papers presented in this section, other works within CD-
Lab explore the application of constraint programming to various other prob-
lems, such as Paint Shop Scheduling [56], Parallel Machine Scheduling with
Contamination Constraints [55], and Oven Scheduling [25].

3 Metaheuristics and Hybrid Approaches

In our lab we have been utilizing metaheuristics and hybrid methods for several
real-world applications. Below, we present a selection of three papers.

In [31] we consider the Test Laboratory Scheduling Problem (TLSP). A re-
stricted version of the problem, called TLSP-S, has been tackled by [28] and [14].
We investigate the possibility of using a local search approach for the general
problem. To this aim, we develop four new complex neighborhoods that modify
the grouping and combine them with neighborhoods affecting the schedule of
the jobs. The general idea is that the two components of the problem are solved
simultaneously in a cooperative fashion.

As metaheuristics for guiding the search, we experiment with the Min-Conflicts
heuristic (MC) [26] and Simulated Annealing (SA) [18]. On top of both of them,
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we also design an iterated local search (ILS) procedure that interleaves the un-
derlying metaheuristic with perturbation steps. As a result, we have four can-
didate solution methods, namely MC and SA both with and without the ILS
perturbations.

All four methods, properly tuned using a statistically-principled tuning pro-
cedure, are compared among each other and with the results of [9] and [28] on
a dataset composed of artificial and real-world instances. All instances used for
this evaluation are publicly available for download.

The general outcome is that we find high-quality solutions even without the
benefit of a known good grouping as in the TLSP-S, which are competitive
with those of [28]. Comparing to the state-of-the-art solver for the TLSP by
[9], we improve results on several instances. We see that we are able to obtain
better results in particular on large instances, or under tight time limits. The
algorithms described in this paper are used successfully in the daily scheduling
of our industrial partner’s laboratory.

In [19] we investigated a driver scheduling problem. When scheduling drivers
for public transport, in addition to covering the demand and dealing with the
spatial dimension, a range of legal requirements, collective agreements and com-
pany policies need to be respected. The level of concentration required while
driving leads to strict rules for break assignments. This results in a complex
problem where creating cost-efficient and employee-friendly schedules is chal-
lenging. This paper deals with bus driver scheduling using the rules of the Aus-
trian collective agreement for private omnibus providers. The contributions are
the formalization of the complex Austrian rules for bus drivers, a new set of
publicly available instances based on the characteristics of real-life instances,
and a metaheuristic solution approach for the problem. The algorithm was able
to significantly improve the solutions of real-life instances and is evaluated on
the generated instances. Further we provide insight in the necessity of objectives
for employee satisfaction and their effects. Our method can even be successfully
applied to improve results on a problem with very different constraints from
Brasil.

In [8, 9] we present an AI system for automated scheduling in test laborato-
ries. We introduce an innovative scheduling system that allows the efficient and
flexible generation of schedules for TLSP. It features a new Constraint Program-
ming model that covers both the grouping and the scheduling aspect, as well as
a hybrid Very Large Neighborhood Search that internally uses the CP model.
Our experimental results on generated and real-world benchmark instances show
that good results can be obtained even compared to settings which have a good
grouping already provided, including several new best known solutions for these
instances. Our algorithms for TLSP have been successfully implemented in a
real-world industrial test laboratory. We provide a detailed description of the
deployed system as well as additional useful soft constraints supported by the
solvers and general lessons learned. This includes a discussion of the choice of
soft constraint weights, with an analysis on the impact and relation of different
objectives to each other. Our experiments show that some soft constraints com-
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plement each other well, while others require explicit trade-offs via their relative
weights.

In addition to the papers presented in this section, other works within CD-
Lab explore the application of heuristic techniques and hybrid methods to var-
ious other problems, such as Paint Shop Scheduling [57, 59], General Employee
Scheduling [20], Parallel Machine Scheduling [32], and Production Leveling Prob-
lem [54].

4 Automated Algorithm Selection

Whenever multiple solution methods are available to tackle a problem, the ques-
tion arises which algorithm to use to solve a given problem instance. While some
methods might entirely outperform others on all instances, typically there is not
a single method that is best on all instances. This fact has been formalized as
the “No free lunch theorem”, stating that “. . . for any algorithm, any elevated
performance over one class of problems is offset by performance over another
class” [60], or in other words that “. . . any two algorithms are equivalent when
their performance is averaged across all possible problems” [61].

However, the problems we are interested in typically have some structure,
and based on this structure we might be able to decide for each instance, which
algorithm might be best suited to solve this particular instance. This core idea
of algorithm selection has been formalized by John R. Rice [41] already back in
1976.

Fig. 1: Rice’s framework as shown in [48]

The main components in the framework are:

– A problem space P representing a set of instances that contains an instance
x.
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– A feature space F that contains measurable characteristics of the instances
generated by a computational feature extraction process applied to x ∈ P .
Measurable means that these features need to be quantifiable by numbers or
at least categories in a well-defined manner. The computational feature ex-
traction process has to be computable in reasonable time - if the time it takes
to extract features is longer than the potential improvement of choosing a
better algorithm, it is not worth the effort. Features can include different
aspects of an instance like instance size, instance structure, or probing fea-
tures that run an algorithm for a short time and report some metrics of this
run. See [43, 36] for a case study with 78 different features on graphs.

– A is the algorithm space containing the set of solution method for our prob-
lem.

– Y is the performance space allowing to measure the performance of an algo-
rithm α on an instance x by y(α(x)). This measure can be solution quality,
runtime to find a feasible or optimal solution, a combination of these, or any
other measurable aspect of algorithm execution.

The goal of algorithm selection methods is now to learn a mapping S(f(x)),
based on the performance of algorithms in A according to the performance metric
y such that this performance metric is maximized by choosing the best suited
algorithm α ∈ A for each instance x ∈ P based on the features f(x) of this
instance.

Typically the most complex part of this process is finding features that cap-
ture what makes an instance of a problem hard or easy to solve for a particular
problem. In order to learn the selection mapping, any supervised machine learn-
ing technique can be used, including methods like Bayesian Networks, Decision
Trees, k-Nearest Neighbor, Random Forests, Multilayer Perceptrons, Support
Vector Machines, or Deep Neural Networks. It is important that an appropri-
ately large training set is used to train this selection mapping.

Since finding adequate features is one of the main challenges in algorithm se-
lection, there are also recent research directions about algorithm selection with-
out features, e.g., by directly using instance data as time series for Recurrent
Neural Networks [1].

5 Instance Space Analysis

However, there might be more questions to answer than selecting an algorithm
for a particular instance. When evaluating a new method for a given problem, the
basic research question of how to judge the performance of this algorithm needs
to be answered. Usually evaluation is done on a set of benchmark instances. Is
it enough to be better in the average? What about only being better in certain
cases? Do the benchmark instances even cover all interesting areas of potential
instances? How can we check our instances and features to make sure that we
can properly identify strengths and weaknesses of different algorithms?

An answer to these questions is provided by Instance Space Analysis (ISA),
a methodology developed by Smith-Miles and co-workers [44, 45, 33, 47] in re-
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Fig. 2: ISA framework [47] extending the original by Rice [41]

cent years, by extending the algorithm selection problem framework of Rice.
Instances are again represented as a feature vector that captures the intrinsic
difficulty of instances for various algorithms (or models or parameter settings).
By constructing a 2-d projection of a feature-vector representation of instances,
ISA allows us to:

1. visualize the distribution and diversity of existing benchmark instances;
2. assess the adequacy of the features;
3. identify and measure the algorithm’s regions of strength footprint and weak-

nesses; and
4. distinguish areas of the space where it may be useful to generate additional

instances to support greater insights.

Figure 2 illustrates the framework and its component spaces. On the top left
is the ill-defined problem space P, which contains all the relevant problems to
be solved. However, we only have computational results for a subset I, which is
modelled separately in ISA. Just like before, further components are the feature
space F , in the bottom left, the algorithm space A on the center right, and the
performance space, Y, below A.

The meta-data, composed of the features and algorithm performance for
all the instances in I, is used to learn the mapping z(x) = g(f(x), y(α, x))
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that projects an instance x from a high-dimensional feature space to a two-
dimensional space, which we call the instance space (bold arrow). Now algorithm
selection can be performed, trying to learn a mapping S to find the best algo-
rithm α∗ for a given instance x, either on the feature vector f(x) (as before), or
on the projection to the instance space z(x). The instance space can further be
used to define footprints (regions of strength) for the algorithms, which can be
used to infer the performance y(α, x) of an algorithm α on an unseen problem
instance x ∈ P. The information from the instance space can also be used to
identify where new instances are needed to augment I.

In earlier work, the projection z was achieved using principal component
analysis, and applied to problems as diverse as graph colouring [44], time series
forecasting [17], and software test case generation methods [39]. In an appli-
cation to machine learning algorithms [34] a customized projection algorithm
was developed to obtain an optimal projection that aims to expose linear trends
in both features and algorithm performance to aid interpretability. The latest
version of the evolving methodology can be found in a more recent publication
[47]. While the ISA methodology is broadly applicable, it needs to be customised
through careful choice of instance features and an understanding of what makes
the problem hard [46].

Instance Space Analysis is available via a web interface1, and the code is
directly available on Github2.

We regularly apply ISA on problems with multiple solution methods, or to
investigate and extend benchmark sets, including work on Rotating Workforce
Scheduling [24], Job Shop Scheduling [49], Course Timetabling [10], and the
Generalized Assignment Problem [13].

Fig. 3: Feature distribution for RWS, number of employees, original instances

Figure 3 shows the distribution of the instances (using their projection into
the 2-dimensional plane based on the 5 most important features) and the distri-

1 https://matilda.unimelb.edu.au/matilda/
2 https://github.com/andremun/InstanceSpace
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bution of the (normalized) number of employees (by the color scale). Note that
the instances are separated into two clusters with a gap in-between, and with
several real-life instances not covered by the artificial instances (red circles).

(a) minAvgBlockLength (b) maxAvgBlockLength

(c) minDayFraction (d) maxDayFraction

Fig. 4: Feature distribution for RWS, extended instances

Based on this analysis, additional instances where generated to cover the
space more thoroughly. Figure 4 shows the new instance distribution in the
instance space, and the distribution of the four main features that were identified
by ISA as the most important ones. They represent variation between lengths
of different working blocks on the z1-axis, and variation of demand between
different days on the z2-axis.

Figure 5 shows several examples of analysis results. The investigation of
feasibility reveals a clear boundary between feasible and infeasible instances in
the space, with more difficult instances on this boundary. Footprints show the
strong and weak areas of individual methods. A portfolio allows to select the
best solution method for each instance based on the location in the instance
space.
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(a) Feasibility (b) Footprint metaheuristic (c) SVM Portfolio

Fig. 5: Examples of ISA results

6 Hyper-heuristics

Hyper-heuristics are a class of high-level problem solving techniques, which oper-
ate over a search space of other heuristic components, called low-level heuristics,
instead of directly over the space of (potential) solutions [40]. Typically, this
additional layer of indirection allows for the design of very general methods that
perform well on and adapt to a wide range of problems, or even the automated
design of new algorithms for specific problem domains.

A classification scheme by Burke et al. [6] distinguishes hyper-heuristics ac-
cording to three dimensions: The main distinction is that between selection
hyper-heuristics, where the heuristic space is defined as a discrete set of low-
level heuristics, which are iteratively selected and applied by the hyper-heuristic,
and generation hyper-heuristics, which automatically assemble low-level heuris-
tics from smaller algorithmic primitives. The second dimension is the distinction
between constructive hyper-heuristics, where the low-level heuristics assemble
a (partial) solution from scratch, and perturbative hyper-heuristics, which start
out from a complete (though not necessarily feasible) solution and modify it to
find better solutions. Finally, hyper-heuristics can be classified according to the
nature of the learning mechanisms they use, including online learning, offline
learning, or no learning at all. A survey of hyper-heuristics of all types was per-
formed in 2013 by Burke at al. [5], with an updated and revised version of the
classification scheme published in 2019 [7].

A survey specifically focusing on selection hyper-heuristics was performed by
Drake et al. [11]. Here, a major direction of research is into problem-independent
hyper-heuristics, which are able to achieve a high performance on a wide variety
and even previously unknown problem domains, where only the set of low-level
heuristics is problem-specific. An important concept in this regard is that of
a domain barrier, which limits the amount of (problem-specific) information
passed from the problem domain to the hyper-heuristic to ensure its problem-
independence. The most popular software framework following this approach
is HyFlex [38], which was originally developed for the Cross-Domain Heuristic
Search Challenge 2011 [4].
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For generation hyper-heuristics, the focus typically falls on the automatic
design of new algorithms for a specific problem. A popular mechanism for this
approach is Genetic Programming, where either full algorithms or core algorith-
mic components (e.g. particular operators or evaluation functions) are automat-
ically assembled from algorithmic primitives such as problem-specific instance
attributes, arithmetic operators, and flow-control constructs (loops, if-else, ...).
Examples of applications can be found in the tutorial by Tauritz and Woodward
[52] or the corresponding chapter of the book on hyper-heuristics by Pillay and
Qu [40].

Our own work on hyper-heuristics includes several new selection hyper-heuristics
based on reinforcement learning [22, 29] or self-adaptive large neighborhood
search [27], which were developed for the HyFlex framework. In addition, we
investigated the application of hyper-heuristic methods on several real-world
problem domains, such as artificial teeth scheduling [58], several variants of per-
sonnel scheduling problems [21], and test laboratory scheduling [30]. Here, we
were able to show that problem-independent hyper-heuristics, operating on a
suitable portfolio of (problem-specific) low-level heuristics, were able to produce
results matching, and sometimes even surpassing those of the state-of-the-art
problem-specific algorithms.
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11. Drake, J.H., Kheiri, A., Özcan, E., Burke, E.K.: Recent advances in se-
lection hyper-heuristics. European Journal of Operational Research 285(2),
405 – 428 (2020). https://doi.org/https://doi.org/10.1016/j.ejor.2019.07.073,
http://www.sciencedirect.com/science/article/pii/S0377221719306526

12. Geibinger, T., Kletzander, L., Krainz, M., Mischek, F., Musliu, N., Win-
ter, F.: Physician scheduling during a pandemic. In: Stuckey, P.J. (ed.)
Integration of Constraint Programming, Artificial Intelligence, and Opera-
tions Research - 18th International Conference, CPAIOR 2021, Vienna, Aus-
tria, July 5-8, 2021, Proceedings. Lecture Notes in Computer Science, vol.
12735, pp. 456–465. Springer (2021). https://doi.org/10.1007/978-3-030-78230-6 -
29, https://doi.org/10.1007/978-3-030-78230-6 29

13. Geibinger, T., Kletzander, L., Musliu, N.: Instance space analysis for the general-
ized assignment problem. In: Metaheuristics International Conference. pp. 421–435.
Springer (2022)

14. Geibinger, T., Mischek, F., Musliu, N.: Investigating constraint programming for
real world industrial test laboratory scheduling. In: Proceedings of the Sixteenth
International Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR 2019) (2019)

15. Gendreau, M., Potvin, J.Y.E.: Handbook of metaheuristics. Springer (2010)
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Abstract. This note gives a brief overview of topic areas addressed in our lecture
on 6 July at the AI Summer School 2023, hosted by the Center for Artificial In-
telligence and Machine Learning (CAIML) at TU Wien. We start with a recap of
propositional satisfiability as a groundbreaking and prominent representative for
the field of computational logic. The central focus of our lecture and this overview
is dedicated to answer set programming, a declarative problem-solving paradigm
geared for knowledge representation and reasoning. We provide an account of
the syntax and semantics of logic programs, which constitute the specification
language of answer set programming, and illustrate their application on an op-
timization problem in the context of software package configuration. While the
scope and level of detail of this short note are limited, we hope to equip the reader
with literature references pointing out relevant publications for in-depth reading.

1 Introduction

With the inception of complexity theory [16], propositional satisfiability (SAT) [9]
emerged as a universal representation formalism for NP-complete search problems [30].
Thanks to the steady increase of computing power and hardware availability, the interest
in SAT has shifted from a primarily theoretical perspective to practical implementations
and applications. For example, SAT approaches proved to be effective for solving com-
plex planning [48], scheduling [17], and configuration [29] problems, where modern
SAT solving techniques range from conflict-driven clause learning (CDCL) [8, 23, 60,
62] over local search methods [49, 66, 69] to algorithm portfolios [41, 55, 58, 68].

While SAT solvers are thoroughly engineered and empirically efficient, the limited
knowledge representation capacities [42, 61, 65] of classical logic often call for proce-
dural front-ends and expert programmers to bootstrap solver inputs [11]. For a high-
level approach to knowledge representation and reasoning, the answer set program-
ming (ASP) paradigm [53, 59, 63] builds on the stable model semantics [26, 27, 40, 64]
for logic programming [5, 52, 56] instead of the classical semantics of logical formulas.
In a nutshell, ASP is an approach to declarative problem-solving [57], integrating con-
cise and readable first-order input specifications, written by users, with powerful search
methods at the propositional level, inspired by solving techniques pioneered for SAT.

In this note, we briefly present the syntax and semantics of logic programs, which
specify the solutions to (search) problems in ASP, and illustrate their practical use on
⋆ This work was partially funded by KWF project 28472, cms electronics GmbH, FunderMax

GmbH, Hirsch Armbänder GmbH, incubed IT GmbH, Infineon Technologies Austria AG,
Isovolta AG, Kostwein Holding GmbH, and Privatstiftung Kärntner Sparkasse.
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an optimization problem in the application area of software package configuration. See,
e.g., [7, 33, 39, 54] for much more elaborate introductions to ASP, [10, 24, 25, 38, 50]
for best practice modeling methodology and its application areas, as well as [12, 37,
45, 47] for computational approaches to grounding and solving implemented by ASP
systems.

2 Syntax and semantics of logic programs

The approach of ASP is to describe the solutions to (search) problems in terms of logic
programs, which are sets of rules specifying the properties of solutions but no procedure
how to compute them. In fact, the solution computation is automated by ASP systems
like CLINGO [34], DLV [12], and WASP [22] that provide domain-independent solving
techniques off-the-shelf. In the following, we introduce the subset of these systems’
input languages [13, 14, 31] sufficient to model our example problem in Section 3.

We consider (nested) rules written in the form

a1, . . . , ak,not ak+1, . . . ,not al :– al+1, . . . , am,not am+1, . . . ,not an. (1)

where 0 ≤ k ≤ l ≤ m ≤ n, the connective not denotes default negation, and :–
resembles a converse implication arrow. (If l = n, we skip :– and write the rule as
a1, . . . , ak,not ak+1, . . . ,not al.) Each ai, for 1 ≤ i ≤ n, is a (first-order) atom of
the form p(t1, . . . , th) in which p is a predicate and every tj , for 1 ≤ j ≤ h, is a term,
i.e., a constant or a variable. Predicates as well as constants are written as alphanumeric
strings starting with a lowercase letter, constants can also be integers, and alphanumeric
strings starting with an uppercase letter denote variables.

The intuitive meaning of a rule (1) is that some of the atoms a1, . . . , ak must be true
if all atoms al+1, . . . , am are (provably) true and if it is consistent to assume that ak+1,
. . . , al are true and am+1, . . . , an are false. In other words, the rule body al+1, . . . , am,
not am+1, . . . ,not an is a conjunction that holds when the atoms occurring positively
are provable and the negated atoms are false. The rule head a1, . . . , ak,not ak+1, . . . ,
not al is a disjunction, where either some of the negated atoms needs to be false or an
atom occurring positively must be true if the rule body holds.

Two prominent special cases of a rule (1) are facts a1., i.e., k = l = m = n = 1, and
integrity constraints :– al+1, . . . , am,not am+1, . . . ,not an., where k = l = 0. While
facts provide definite knowledge in the form of head atoms that must unconditionally
be true, the empty head of an integrity constraint cannot be satisfied so that its body
must not hold. Another frequent special case is a choice rule

a,not a :– a3, . . . , am,not am+1, . . . ,not an.

and we will write it as

{a} :– a3, . . . , am,not am+1, . . . ,not an.

in the sequel, where {a} indicates that the head atom a can be chosen to be true or false.
In order to represent optimization objectives, weak constraints of the form

:~ al+1, . . . , am,not am+1, . . . ,not an. [w@v, t1, . . . , th] (2)
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have an empty head, similar to integrity constraints, yet incur a weight w at level v as
penalty if the body al+1, . . . , am,not am+1, . . . ,not an holds, where t1, . . . , th are
terms disambiguating recurrences of the penalty w@v.

A logic program P is a set of rules and weak constraints. The ground instantiation
ground(P ) of P is the set of all rules and weak constraints that can be obtained by sub-
stituting variables in P with constants. That is, variables in rules and weak constraints
of P are universally quantified, and ground(P ) includes respective (variable-free) in-
stances taking all constants as possible variable values.

We are now ready to characterize the semantics of a logic program P in terms of
interpretations X , i.e., sets of ground (variable-free) atoms that are true. To this end,
the reduct PX of P relative to some interpretation X is defined as:

PX =



a1, . . . , ak :– al+1, . . . , am.

∣∣∣∣∣∣

there is a rule (1) in ground(P ) with
{ak+1, . . . , al} ⊆ X and
{am+1, . . . , an} ∩X = ∅





An interpretation X ′ is a model of PX if we have that {a1, . . . , ak}∩X ′ ̸= ∅ or {al+1,
. . . , am} ⊈ X ′ holds for every rule in PX . That is, a model X ′ of PX satisfies the
head of a rule in PX if its body holds. The interpretationX is an answer set, also called
stable model, of P if X is a model of PX such that there is no model X ′ ⊂ X of PX .
Note that the minimality of an answer set X among models of its reduct PX reflects
provability, i.e., the true atoms in X must be derivable by means of the rules in PX .

It remains to identify the optimal answer sets of a logic program P in the pres-
ence of weak constraints. Hence, by levels(P ), we denote the set of all integers v such
that some weak constraint (2) with the penalty w@v occurs in ground(P ). For any
interpretation X and v ∈ levels(P ), let weak(P, v,X) be the set of all term tuples
(w, t1, . . . , th) such that there is a weak constraints (2) in ground(P ) for which w in
the penalty w@v is an integer, {al+1, . . . , am} ⊆ X , and {am+1, . . . , an} ∩ X = ∅.
Summing up the weights w over tuples in weak(P, v,X) yields a score forX at level v:

score(P, v,X) =
∑

(w,t1,...,th)∈weak(P,v,X)w

Then, an answer set X of P is optimal if there is no answer set X ′ of P such that,
for some v ∈ levels(P ), score(P, v,X ′) < score(P, v,X) and score(P, v′, X ′) =
score(P, v′, X) for any v′ ∈ levels(P ) with v < v′. That is, scores are minimized in
decreasing order of levels, and the scores obtained for optimal answer sets are minimal.

For illustration, consider a (ground) logic program P consisting of the following
rules and weak constraints:
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{bottleChosen(white)}. (3)
{bottleChosen(rose)}. (4)
{bottleChosen(red)}. (5)

hasBottle(axel) :– bottleChosen(white). (6)
hasBottle(axel) :– bottleChosen(rose). (7)

hasBottle(roman) :– bottleChosen(rose). (8)
hasBottle(roman) :– bottleChosen(red). (9)

:– not hasBottle(axel). (10)
:– not hasBottle(roman). (11)
:~ bottleChosen(white). [5@1,white] (12)
:~ bottleChosen(rose). [8@1, rose] (13)
:~ bottleChosen(red). [5@1, red ] (14)

The choice rules (3)–(5) state that bottles with white , rose , and red wine can each
be chosen (unconditionally). If the bottle with white or rose wine is chosen, the person
axel has an appropriate bottle, and likewise with the rose or red wine bottle for roman ,
as expressed by the rules (6)–(9). The integrity constraints (10)–(11) require that some
appropriate bottle must be chosen for each of the persons axel and roman . In view of
these rules, the logic program P has five answer sets, each of which extends the set
X = {hasBottle(axel), hasBottle(roman)} of atoms:

X1 = X ∪ {bottleChosen(rose)}
X2 = X ∪ {bottleChosen(white), bottleChosen(rose)}
X3 = X ∪ {bottleChosen(white), bottleChosen(red)}
X4 = X ∪ {bottleChosen(rose), bottleChosen(red)}
X5 = X ∪ {bottleChosen(white), bottleChosen(rose), bottleChosen(red)}

Given the weak constraints (12)–(14), since all answer sets Xi except for X3 con-
tain the atom bottleChosen(rose), the corresponding sets weak(P, 1, Xi) include the
term tuple (8, rose). Similarly, the term tuple (5,white) belongs to weak(P, 1, X2),
weak(P, 1, X3), and weak(P, 1, X5), while weak(P, 1, X3) to weak(P, 1, X5) include
(5, red). As a consequence, we obtain score(P, 1, X1) = 8, score(P, 1, X2) = 13,
score(P, 1, X3) = 10, score(P, 1, X4) = 13, and score(P, 1, X5) = 18 as scores (at
level 1) for the five answer sets. Since the score 8 forX1 is minimal and the other scores
are strictly greater, X1 with bottleChosen(rose) is the only optimal answer set of P .

3 Optimal Linux package configuration with ASP

The Linux package configuration problem has been posed as a real-world challenge in
the context of the MANCOOSI project [20], as part of the research on free and open
source software management. In fact, when a package manager like APT, which is in-
cluded in Debian and Ubuntu Linux distributions, is run for updating an installation,
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libc-1 libc-2 glibc-1

c1 c2 c3

gpg-1 gpg-2 gpg-3

c4

(a) Graph representation of the instance

package(libc, 1). package(libc, 2).
package(glibc, 1). package(gpg , 1).
package(gpg , 2). package(gpg , 3).

satisfies(libc, 1, c1). satisfies(libc, 2, c1).
satisfies(libc, 1, c2). satisfies(glibc, 1, c3).
satisfies(gpg , 1, c4). satisfies(gpg , 2, c4).
satisfies(gpg , 3, c4). request(c4).

depends(gpg , 1, c1). conflicts(libc, 2, c2).
depends(gpg , 2, c2). conflicts(gpg , 3, c3).

installed(libc, 1). installed(glibc, 1).
utility(delete, 1). utility(change, 2).

(b) Fact representation of the instance and objectives

Fig. 1: Problem instance where a package satisfying the condition c4 has to be installed

it evaluates package meta-data to fulfil dependencies and avoid conflicts among the
installed packages. As the underlying installability problem is NP-complete, greedy ap-
proaches as the one implemented in APT cannot guarantee to find a solution, even if an
installation exists, nor reduce required package additions and removals to a minimum.

For promoting the design of more powerful and reliable methods, the MANCOOSI
international solver competition (MISC) [1] has been initiated to evaluate and showcase
elaborate optimization approaches in a common setting. To this end, several optimiza-
tion objectives and collections thereof are predefined and assessed in separate tracks:
paranoid for a server machine, trendy for a desktop machine, and user for a customized
collection of objectives. In the following, we present a simplified version of the ASP-
CUD solving approach [35] for the paranoid track. Notably, ASPCUD utilizes a uniform
problem encoding for all tracks, i.e., a single (first-order) logic program includes rules
and weak constraints specifying all of the predefined optimization objectives, while the
objectives to apply along with their levels are configured by facts in a problem instance.1

An instance of the Linux package configuration problem is visualized in Figure 1(a)
and formally specified by the facts in Figure 1(b). The six versioned packages libc-1,
libc-2, glibc-1, gpg-1, gpg-2, and gpg-3 are available for installation, of which libc-1
and glibc-1 constitute the current installation. An installed package satisfies associated
conditions, i.e., c1 and c2 are satisfied by libc-1 as well as c3 by glibc-1. Moreover, the
installation of a package can depend on conditions, such as gpg-1 and gpg-2 requiring
the satisfaction of c1 or c2, respectively, while the conflicts of libc-2 with c2 and of
gpg-3 with c3 prohibit the conditions to be satisfied when these packages are installed.
The task for the instance in Figure 1 consists of updating the current installation such
that the condition c4 gets satisfied, for which some of the packages gpg-1, gpg-2, and
gpg-3 needs to be installed. When comparing a follow-up to the current installation, the
paranoid optimization objectives are to minimize package changes in the first place,
meaning that the installed versions of a package should remain as is whenever possible,

1 For the ASPCUD implementation, see: https://potassco.org/aspcud/

Logic for Declarative Problem-Solving and its Applications 44



6 G. Friedrich and M. Gebser

{install(P, V )} :– package(P, V ). (15)

install(P ) :– install(P, V ). (16)

satisfy(C) :– install(P, V ), satisfies(P, V,C). (17)

exclude(C) :– install(P, V ), conflicts(P, V,C). (18)

include(C) :– install(P, V ), depends(P, V,C). (19)

:– exclude(C), satisfy(C). (20)

:– include(C), not satisfy(C). (21)

:– request(C), not satisfy(C). (22)

violate(delete, L, P ) :– utility(delete, L), installed(P, V ),not install(P ). (23)

violate(change, L, P ) :– utility(change, L), installed(P, V ), not install(P, V ). (24)

violate(change, L, P ) :– utility(change, L), install(P, V ),not installed(P, V ). (25)

:~ violate(U,L, P ). [1@L,U, P ] (26)

Fig. 2: Linux package configuration encoding for paranoid optimization objectives

and to further omit package deletions as secondary objective, reflecting the intent to
preserve at least some version of an installed package in case a change is unavoidable.

The first-order logic program, also called encoding, in Figure 2 specifies optimal
follow-up installations under paranoid optimization objectives for arbitrary instances
of the Linux package configuration problem. Its outline follows the common generate-
and-test modeling pattern [24, 38, 50, 53], where choice rules provide solution can-
didates, further rules and integrity constraints verify the properties of solutions, and
weak constraints determine the solutions’ scores. In more detail, the choice rule (15)
states that every versioned package may belong to a follow-up installation, and the
rule (16) indicates packages of which some version will be installed. For the packages
of a follow-up installation, the rules (17)–(19) derive conditions that are satisfied, must
not be satisfied due to conflicts, or need to be satisfied to fulfil dependencies, respec-
tively. The integrity constraints (20)–(21) then check the absence of conflicts as well as
the satisfaction of required dependencies, and the integrity constraint (22) makes sure
that installation requests are fulfilled. Taken together, the rules (15)–(22) thus establish
that answer sets match problem solutions, i.e., they represent follow-up installations
satisfying all package dependencies and installation requests while avoiding conflicts.

It remains to associate answer sets with scores in order to optimize objectives con-
figured by facts in a problem instance. To this end, the rule (23) indicates packages of
which some version is currently installed, while none of them is included in the follow-
up installation (provided that package deletions are to be minimized at some instance-
specific level). Similarly, the rules (24)–(25) reflect package changes, occurring when a
currently installed version is to be dropped or some new version will be installed. As the
weak constraint (26) incurs the penalty 1@L for any atom of the form violate(U,L, P ),
expressing that an optimization objective U is violated for the package P at level L, the
install(P, V ) atoms in an optimal answer set yield a best choice follow-up installation.
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ASPCUD

Preprocessor

Encoding

Grounder Solver SolutionCUDF

Fig. 3: Complete workflow of the ASPCUD solver for Linux package configuration

Among fifteen feasible follow-up installations that fulfil the request c4 for the prob-
lem instance in Figure 1, three are optimal. They include the versioned packages libc-1
and glibc-1 from the current installation in order to avoid package changes for libc
and glibc. In addition, gpg-1, gpg-2, or both get installed to satisfy the condition c4,
which gives the three optimal follow-up installation possibilities. The resulting package
change for gpg cannot be omitted, yet refraining from an installation of gpg-3, which
conflicts with the condition c3, avoids a package change (and deletion) for glibc.

After focussing on the core optimization by means of ASP, let us briefly outline the
complete workflow of the ASPCUD solver, which is displayed in Figure 3. For interop-
erability, ASPCUD reads in package meta-data in the common upgradability description
format (CUDF) [1], and its preprocessor takes care of producing a fact representation as
illustrated in Figure 1(b). Beyond pure textual conversion from CUDF to ASP facts, the
preprocessor analyzes package dependencies and optimization objectives to skip facts
for irrelevant packages, i.e., packages that are not currently installed and cannot help
to fulfil dependencies and installation requests. Moreover, the preprocessor applies a
greedy algorithm to partition the packages whose installation may be relevant into con-
flict cliques, where at most one package per clique can possibly be installed. Both of
these deterministic preprocessing steps could in principle also be encoded in ASP by
adding respective rules to Figure 2, but their procedural implementation in the prepro-
cessor is computationally way more efficient. While the encoding in Figure 2 suffices
for the paranoid track, the full encoding utilized by ASPCUD specifies all MISC opti-
mization objectives, consisting of five applicable measures that can each be combined
with six selection criteria on packages.

As common for declarative problem-solving with ASP, the uniform problem encod-
ing and the instance obtained from the preprocessor first undergo a grounding step [12,
45, 47], responsible for producing a concise yet equivalent representation of the (theo-
retical) ground instantiation of the logic program comprising the instance and encod-
ing. This step substantially benefits from the omission of facts for irrelevant packages,
as large Linux distributions with 50.000 packages or more can often be condensed to
10–20% fractions of packages whose installation matters, thus sparing the generation of
rule instances for the majority of available packages. The subsequent solving step [22,
32, 37] performs the search for optimal answer sets, where ASP systems support both
model- and core-guided optimization strategies [2], which are also successfully applied
to optimization versions of SAT. Considering that dependency graphs like in Figure 1(a)
can be large but tend to be sparse for the Linux package configuration problem, core-
guided optimization that identifies local structures inducing the scores for answer sets is
particularly advantageous, and thus ASPCUD runs the ASP system CLINGO with a core-
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guided optimization strategy. The conflict cliques obtained from the preprocessor are
additionally incorporated to break down scores, given that the encoding can attribute
the score for an entire clique to a single or no package to be installed, while other
(impossible) cases are ruled out. By means of its carefully devised preprocessing and
encoding techniques, ASPCUD succeeded to win all tracks of the last MISC competition
in 2012 by a noticeable margin, owed to the knowledge representation capacities of a
uniform problem encoding ready to deal with various optimization objectives in inputs.

4 Conclusion

The ASP paradigm for declarative problem-solving integrates high-level knowledge
representation by uniform problem encodings in a first-order input language with pow-
erful search and optimization techniques pioneered in the closely tied area of SAT solv-
ing. A grounding step automates the instantiation of a uniform problem encoding rela-
tive to facts describing a specific instance, where the underlying stable model semantics
is particularly beneficial for computational efficiency. This approach enables concise
and readable first-order input specifications, which promote the rapid prototyping of
new applications by domain rather than programming experts.

Active research and development directions include, e.g., flexible interfaces for the
customization of heuristics and interoperation of ASP system components [15, 21, 22,
34, 36]. Further conceptual and practical extensions address the integration of constraint
and integer programming methods [18, 44, 46, 51], reasoning techniques for compu-
tational tasks and preference rankings of elevated complexity [3, 4, 28, 43], and lazy-
grounding approaches for demand-driven instantiation during search [6, 18, 19, 67].
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Abstract. Knowledge graphs and graph data in general are becoming more and
more essential components of machine learning pipelines and use cases. Apart
from data naturally occurring as graphs, such as social networks or Linked Data
on the Web, the flexibility of the graph model and its ability to store data relation-
ships explicitly enables integrating and exploiting data from very diverse sources.
Nevertheless, to enable graph machine learning, we first need to understand and
manage the graph data itself. In this paper, we will therefore look into the basics of
modeling knowledge graphs using ontologies, managing graph data using graph
stores, ensuring quality, managing provenance, and querying knowledge graphs
using structured query languages.

1 Introduction

Knowledge graphs have emerged as powerful tools for representing structured knowledge
in various domains. Their ability to model nearly arbitrary types of data have made
knowledge graphs a universal tool for a broad range of applications. Hence, knowledge
graph technologies have long been embraced as methods for storing and managing
knowledge in a structured and easily accessible way. In fact, the term “knowledge
graph” was coined by Google when they launched their Knowledge Graph in 2012. In
the meantime, industry-scale knowledge graphs have grown to billions of entities and
assertions about them [56]. While Google’s Knowledge Graph fuels the information
displayed in infoboxes that are shown along with the links to websites matching the
user’s keywords, Microsoft for instance does not only have a knowledge graph to power
its search engine Bing but also manages the LinkedIn graph and the Academic graph –
the latter covering information about people, publications, conferences, etc. Enterprise
Knowledge Graphs [56] are another prominent example providing knowledge within
the scope of a restricted organization or community. Other knowledge graphs, such as
YAGO [31], DBpedia [45], or Wikidata [72], are freely accessible to the general public
and mainly resulting from academic research and community efforts.
On the other hand, knowledge graphs also have roots in knowledge representation,

description logics, and the Semantic Web [67]. And indeed there is a broad body of
related work in this context. The vision of the Semantic Web, for instance, as outlined
by Sir Tim Berners-Lee et al. [14] sketched an environment where intelligent agents
could gather information from the Web (Linked Data) that comes along with semantics
★ Large parts of this paper were first published in volume 13985, pages 3–15, 2023, by Springer
Nature.
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and links to other sources of information so that the agents would be able to understand
the information that is being found and find more if needed. Such agents are also
somewhat intelligent in the sense that they can use the information and apply logical
reasoning to achieve a given task, and even independently “negotiate” with other agents
to for example make appointments with a doctor. While this sounds similar to personal
assistants (Siri, Echo, etc.), which are operating as black boxes on machine learning
models and undisclosed data owned by a company, agents on the Semantic Web were
supposed to work based on mostly Open Data accessible to everyone and in that way
providing some kind of verifiability since, in principle, everybody could access the data
that was used to solve a task.
Most recently, large language models, and in particular ChatGPT1, have gained a

lot of attention. Obviously, it is very appealing to simply formulate questions in natural
language and receive elaborate and detailed replies that explain an extremely broad range
of complex topics. While this system seems to be intelligent, it suffers from a similar
problem as other large language models andmachine learning approaches in general: the
answer it returns is the most probable answer, it cannot be certain about its correctness.
In the context of ChatGPT the latter is commonly referred to as hallucinations [13],
i.e., the answer does not necessarily reflect reality but can be “made up”. Furthermore,
because of the way these systems are built, they operate as black boxes that cannot really
explain how they arrived at a certain answer. Hence, verifying claims can so far only be
done by accessing external information and methods. Moreover, reasoning capabilities
of such systems are still limited. However, with advances in areas such as neurosymbolic
AI, aiming to combine the strengths of logical reasoning and machine learning, we are
slowly getting closer to arriving at intelligent systems.
In any case, approaches based on machine learning can only be as accurate, correct,

and precise as the data they are trained upon; commonly referred to as the “garbage in,
garbage out” principle. Hence, knowledge engineering, along with quality enhancement
and provenancemanagement, plays an important role to improve andmaintain the quality
of the data delivered as input to such a system for training. Graphs and knowledge graphs
play a dual role in this contact by either providing raw input data for training or helping
to access and extract additional information to enhance other datasets. In this context,
machine learning approaches help construct knowledge graphs, expand, and improve
them; NLP techniques, for example, are used to extract facts from natural language text,
machine learning plays an inherent role in entity resolution and matching, etc.
In this paper, we therefore claim that more advances in knowledge engineering are

needed to provide systems with accurate knowledge so that they can become more
intelligent. Hence, we review current challenges in modeling and storing knowledge
(Section 2), querying knowledge (Section 3), knowledge quality, provenance, and meta-
data (Section 4), and conclude the paper in Section 5.

2 Modeling and Storing Knowledge

While knowledge graphs are designed to capture information by representing entities
(persons, places, concepts, etc.) as nodes, and relationships (bornIn, locatedIn, etc.)

1 https://openai.com/chatgpt
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Fig. 1: Example RDF representations [65]: a) sorted file, b) hash map, c) property table,
and d) B+ tree

as directed edges between them, they can be modeled using alternative data models;
typically these are either RDF 2

,
3 or property graphs. Depending on the chosen data

model and the users’ information needs, knowledge graphs are typically managed and
queried by triple stores (in case of RDF) or graph stores (in case of property graphs).
Given path and reachability queries [74], e.g., determining the shortest path between a
given set of nodes, property graphs are typically preferable whereas triple stores have
advantages for graph pattern matching involving the labels of multiple nodes and edges.
Whereas commercial systems are available for both data models, the research body

supporting RDF is larger. This might be due to the fact that RDF and the corresponding
query language SPARQL4 have long been W3C standards and well defined whereas
property graphs are mostly driven by commercial systems and lack common standards
– there are some recent advances though to define such standards [9, 17].
Still, even if there is a well-defined common data model, as it is the case for

RDF, there are still several design options and alternative ways for representing and
organizing the data – a few of them are illustrated in Figure 1. In general, the design
space for RDF data representations can be organized in a three-dimensional space [65]
defined by (i) subdivision (fragmentation and partitioning of the data), compression
(how compressed is the data, how many bits are needed), and redundancy (does the
system store multiple copies). In the end, it is the use case along with its query load,
usage patterns, data characteristics, and other constraints that determine which design
solution is the best. While some recommendations can be made based on an the expected

2 https://www.w3.org/RDF/
3 In RDF edges are represented as triples (subject, predicate, object), where subject and object
represent a pair of nodes and the predicate describes the relationship (edge label) between
them.

4 https://www.w3.org/TR/rdf-sparql-query/
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workload [65], existing benchmarks often under-represent particular use cases, such as
multi-hop traversals and existence checks, and therefore cannot help all use cases. Hence,
developing more comprehensive benchmarks is one of the open challenges. Moreover,
developing adaptive solutions that either manually or semi-automatically choose and
adapt the design of an graph store to its needs – maybe in the sense of self-designing
data structures [38] or self-organizing database systems [71], which both often involve
machine learning approaches to guide optimizations – remains an interesting challenge
for future work.
Apart from questions on how to store RDF in a single-server environment, there

are many more use cases and storage paradigms for distributed environments. Such
systems involve multiple servers in different configurations of autonomy [57] and range
from cluster setups via federated scenarios to P2P systems. One of the well-understood
challenges [66] in this context is that existing ecosystems are designed for tabular data
or relational databases, while we are still lacking an ecosystem for big graph processing
covering all components of a pipeline incl. extracting and converting data into a native
graph format, integrating different datasets into graphs, enabling OLTP as well as OLAP
operations on graphs, and finally also providing input for graph-based applications, for
instance specialized in machine learning, business intelligence, scientific computing,
or augmented reality. There are still many challenges to build such an ecosystem.
Naturally, scalability is one of them and the question how new hardware can be used
for this purpose. But there are also interoperability issues between the different graph
models, query languages, and standards that hamper efficient use of graph data. There
is also still very little research on efficiently supporting dynamic and streaming graphs.
Some use cases require to integrate large amounts of heterogeneous data. This can

include converting knowledge from one graphmodel to the other [3,10,43]. On the other
hand, this also includes converting data originally provided in other formats into graphs,
e.g., using R2ML [24] or RML [18], followed by some integration and homogenization
to ensure quality. However, instead of transforming the data directly, knowledge graphs
can also be used as a (virtual) integration layer – similar to traditional virtual data
integration scenarios [57]. This scenario, often applied in the context of data fabrics
and data lakes [53], uses knowledge graphs to provide an integrated interface where
information can be accessed under a unified view. When the data then needs to be
accessed, it can be searched, retrieved, and if needed converted on demand from the
sources. Yet, finding and matching entities across different datasets is a challenging task.
When converting all data into an integrated knowledge graph directly, it can be

queried in a single system – not onlywith standard queries. There are someworks [25,54]
on setting up semantic data warehouses – as illustrated in Figure 2 incl. spatio-temporal
extensions. The setup is similar to traditional data warehouses on relational data; there
needs to be an ETL process as well as a way to define data cubes along with several
analytical dimensions. The data can then be analyzed, cleansed, further data can be
included, we can chose to keep track of metadata and provenance, links to external data
sources can be created, and finally the data can be published, for instance on the Semantic
Web. This is related in spirit to the lack of graph processing ecosystemsmentioned above
and therefore meets similar challenges.
Alternatively, knowledge can also be organized in federations of data sources ac-
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Fig. 2: Semantic Data Warehousing [25, 54]

cessible over the Web, i.e., each provider hosts a public endpoint (typically SPARQL)
and makes it accessible and queryable to everyone. While SPARQL queries can be
formulated over a combination of data from multiple remote sources, it is the task of the
query optimizer (federation engine) to identify which publicly available sources should
be queried with which part of the query to compute the final answer. An interesting
observation here is that publishing data and making it available in this way is very easy
as the publishers do not need to conform to a common integrated schema. However, this
comes at the expense of query formulation and optimization, which then is considerably
more complex. To formulate a query, users themselves have to know how the infor-
mation in the different sources are connected – whereas this would typically be done
when defining a common schema or table in a traditional relational database scenario.
Likewise, the query optimizer has to decide for each query individually (on individual
node-to-node connections) which data sources to select – whereas in a traditional re-
lational setup such information could be captured by mappings valid for all tuples in a
table, which therefore allows for preselecting sources.
Finally, solutions building upon P2P systems can be used to share data. Depending

on the network structure and the replication rate, such systems can keep data available
despite node failures. Some systems assume a fixed or previously known set of peers with
some central agreement on where to store which kind of data [41] while others employ
the unstructured P2P paradigm, where peers have the largest degree of autonomy [5,6],
i.e., there is no global knowledge or control and peers are free to join with their data.
As discussed in this section, there are many ways to model, integrate, store, and

manage knowledge. Each of these options has different advantages, disadvantages, and
goals, e.g., if access efficiency is more important, then a single-server or cluster-system
might be preferable – if the main goal is to keep the data available, then P2P systems
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Fig. 3: Knowledge Graph Exploration Techniques [47]

are a good choice. Nevertheless, each of these systems faces a range of open challenges
in each of the steps mentioned above.

3 Querying Knowledge

The way in which knowledge is queried very much depends on the chosen data model
and the way the data is physically stored. Most commonly either Cypher or SPARQL
queries are used as query languages. Then, similar to traditional relational database
systems, it is the task of the query optimizer to find an efficient query execution plan to
answer the query.
However, many users are not familiar with the details, content, and schema of a

knowledge graph and therefore have difficulties formulating structured queries. To help
such users, the literature has proposed exploratory query techniques and the query-
by-example paradigm [47, 48]. In this case, users do not formulate structured queries
directly but provide the system with examples of potential answers – the system then
tries to reverse engineer a query from the desired output, executes it, and presents
the results to the user who can then iteratively refine the query until the information
need is met. This is even possible for complex setups incl. analytical queries over
statistical knowledge graphs [46]. Exploratory techniques for knowledge graphs cover a
broad range of methods (see Figure 3) that include data profiling [1] as well as skyline
queries [42].
Assuming that the user was able to formulate a structured query that expresses the

information need, there is a broad range of query optimization techniques depending
on the architecture of the system. In this respect, we can distinguish the architectures
illustrated in Figure 4: (i) centralized systems, where all data is stored on a single
server, (ii) client/server architectures, where we have multiple clients querying the data
on a single server, (iii) parallel systems, where we have a cluster of servers on which
the knowledge graph is partitioned and queried exploiting parallel computation, (iv)
federated systems, where we have multiple independent data sources with knowledge
graphs and queries spanning multiple of these knowledge graphs, and (v) P2P systems,
where we have a number of autonomous peers that might join and leave the network at
any time.
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Each of these architectures is tailored for providing access to knowledge in a different
use case. While in all setups, the query optimizer aims at answering queries efficiently,
optimization strategies in particular systems might have slightly different objective
functions. In case of single-server centralized systems, the goal is typically to minimize
query execution time by exploiting local indexing structures, access paths, caching,
precomputation, etc. [20, 20, 35, 37, 40, 51, 73]. This is similar in spirit to parallel
systems, where the goal is to additionally exploit parallel computations in a cluster of
machines [19,34], e.g., by partitioning graphs to execute parts of a query independently
and in parallel. Client/server architectures, on the other hand, also aim at answering
queries efficiently. However, since such systems might suffer from times where more
clients issue queries than the server can handle, the optimization goal is often not to focus
on optimizing individual queries but instead the overall throughput, i.e., the number of
queries that are successfully completed in a given period of time. This might entail that
some expensive operations are “outsourced” from the server to the client, which might
slow down the execution of an individual query but by freeing the resources on the
server more queries can successfully complete within the same period of time [4, 12].
Another optimization goal can be witnessed in systems building upon unstructured

P2P architectures [5, 8]. Since peers offering access to unique knowledge might leave
the network at some point in time, the system stores copies of the data on other peers. Of
course, the system tries to execute queries as efficiently as possible but more important
than that is to keep the data available despite node failures. Due to the lack of central
control, such systems then either resort to flooding the network with a particular query
to find relevant data, i.e., sending messages to all known peers, or employing some kind
of indexes that capture summaries of knowledge available at remote peers and query
them directly.
Finally, federated setups [33, 36,39, 52, 68,69] are commonly used on the Semantic

Web and LinkedOpenData [27]5, where hundreds of publicly accessibly servers provide
query access to billions of facts covering a diverse range of topics. Such data sources
typically offer access via SPARQL endpoints, i.e., they offer interfaces that given a
SPARQLquery provide corresponding answers executed over the local knowledge graph.

5 http://cas.lod-cloud.net/

7

Knowledge Engineering for Graph Machine Learning 58



Query
?name

?genre

rdf:type

dbo
:art
ist

?album
dbo:album

?artist

dbo:releaseDate
?date

foaf:name

dbo
:gen

re
?song

Source Selection 

Local Optimization &
Execution

Federa)on Engine

Global Optimization Postprocessing

Sources

Indexes & 
Statistics Caching

Result

Fig. 5: Federated Query Processing

Then, given a SPARQL query spanning multiple knowledge graphs, hosted on multiple
remote SPARQL endpoints, the task of a federation engine (illustrated in Figure 5) is to
analyze the given query, identify which endpoints provide relevant data for the different
parts of the query, decide which parts of the query should be executed on which endpoint
and in which order, have the subqueries executed on the chosen endpoints, receive the
partial results, and combine them into the final answer to the query.

There are many factors that influence which architecture is the most appropriate for
a particular use case, e.g., how many computing resources do we have, who owns the
data, which kind of access is allowed, etc. On the other hand, the types of queries and
the information need of users plays a decisive role. Connectivity and path queries or
logic reasoning, for instance, benefit from different optimization strategies, data models,
and indexes than regular graph pattern matching queries. Finally, if knowledge graphs
are to be integrated into machine learning pipelines, then a centralized or cluster-based
architecture and ecosystem is often preferable.

While there is plenty of related work in each of these setups and scenarios, there
are still many open challenges; some of them with respect to traditional issues such as
cardinality estimation, cost functions, etc. Other challenges originate from heterogeneity
and interoperability of data models, interfaces, use cases, etc. The OneGraph vision [44],
for instance, sketches a scenario where the data model no longer determines the query
languages and would allow formulating Cypher queries over an RDF store. On the
other hand, heterogeneous federations [29, 50, 51] have been explored with the goal of
bridging the gap between different query interfaces and architectures. Still, in many
aspects research is just about to begin looking into efficient solutions to the wide variety
of challenges in this context.

8

Knowledge Engineering for Graph Machine Learning 59



4 Knowledge Quality and Metadata

Intuitively, any system – using machine learning or not – will not be able to produce
high-quality results (“garbage in, garbage out”) if it is not provided with high-quality
input data. So far research on aspects such as data cleaning [16] and data profiling [1]
has mainly focused on relational data and is not straightforward to apply to knowledge
graphs. This is amplified by the issue that – in contrast to relational data – knowledge
graphs are valid without the need for a strict schema or compliance to an ontology.
Hence, a first step to ensure quality is to extract schemas from knowledge graphs and
check conformance. Whereas there exist standards, such as OWL6 and RDFS7, to define
ontologies and schema constraints for knowledge graphs modeled in RDF, similar work
on property graphs has so far been hampered by the lack of a well-defined standard,
which however might come soon [9].
Nevertheless, while OWL and RDFS have been developed for capturing the meaning

of data by defining proper classes, hierarchies, and constraints, SHACL8 has been
proposed more recently as a standard to define constraints on the structure of knowledge
graphs – without the need to define a proper full-fledged ontology and capture the
meaning of the data. SHACL allows to define graph patterns, referred to as shapes,
along with constraints that subgraphs matching the patterns/shapes should fulfill. While
SHACL is becoming more and more adopted by the community, it still remains a
challenge to avoid having to define shapes manually [62] but instead being offered semi-
automatic solutions for creating them given a knowledge graph as input. While mining
shapes from large knowledge graphs meets scalability issues, it is also important to mine
meaningful shapes [63] and avoid spurious ones, i.e., those that do not occur frequently
or are fulfilled by only a small proportion of matching subgraphs. Once determined,
such shapes can not only be used to create validation reports but they can also be used
in a more interactive fashion in a similar way as mined association rules [22], e.g., to
help experts find outliers and erroneous information so that the data can be corrected
and the quality can be improved [64].
Another way of improving quality and trust in knowledge is to provide metadata.

While metadata in property graphs can be expressed by adding attributes to nodes
and edges, this is not straightforward for knowledge graphs. The latter require special
constructs, such as reification, singleton properties [55], named graphs [15], or RDF-
star9. While reification leads to a large increase in the number of triples (because subject,
predicate, and object of the original triple are separated into their own triples), singleton
properties (instantiating a unique subproperty for each triple with metadata) and named
graph solutions (in the worst case creating a separate named graphs for each single
triple) typically also suffer from scalability issues and require verbose query constructs
since existing engines are not designed to efficiently support such use cases. On the other
hand, RDF-star is proposing to nest triples, i.e., to use a complete triple on subject or
object position of another triple. While this is very elegant from a modeling perspective,

6 http://www.w3.org/TR/owl2-overview/
7 http://www.w3.org/TR/rdf-schema/
8 https://www.w3.org/TR/shacl/
9 https://w3c.github.io/rdf-star/
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it poses several challenges on data organization and querying since nesting has not yet
been a typical requirement. Still, many triple stores do already support RDF-star so that
it can already be used in practice.
Provenance, in the sense of explaining the origin of data, is an important kind of

metadata. In this sense it is often desired to capture information about who created the
data, how and when it was obtained, how it was processed, etc. In RDF, such workflow
provenance [21, 26] can for instance be encoded using the PROV-O10 ontology, which
offers several classes with well defined meaning for this purpose. Another type of
provenance, how-provenance [11,23,30], describes how an answer to a particular query
was derived from a given input dataset. This approach allows to directly trace down
the input tuples/triples/edges that were combined to derive a particular answer to a
query – in addition, how-provenance also returns a polynomial describing how these
tuples/triples/edges have been combined for a given query answer. In general, all flavors
of provenance help explain answers to structured queries and in doing so increase the
trust users can have in a system. To the best of our knowledge, however, there is currently
no system for knowledge graphs combining workflow provenance with how-provenance.
Finally, it is also important to highlight that, although knowledge graphs are mostly

considered to be static and not changing, in reality knowledge changes over time [32,61]
so that we can expect multiple versions of a knowledge graph. This is often referred to as
knowledge evolution or dynamic knowledge graphs. However, in current practice, older
versions of a knowledge graph typically disappear and only the latest version remains
available. Instead of losing older versions, some systems attempt to capture previous
versions and keep them retrievable [7, 58, 70]. However, existing engines have not been
designed for this kind of usage and the current state of the art still has deficiencies in
efficiency and coverage of use cases [59, 60].
While quality, provenance, and knowledge evolution are all very important topics

discussed in the literature from different perspectives, most of today’s engines do not yet
come with efficient native support. Recent developments suggest that RDF-star might
soon become the standard way of encoding and supporting metadata. Still, existing
methods building upon it do not (yet) support the full spectrum and even though many
triple stores already support RDF-star, they have limitations regarding full compliance
and efficiency [2]. Hence, there are many open challenges with supporting quality on
all levels incl. optimizing the data layout, encoding and computing metadata, quality
assurance and validation, query optimization, etc.

5 Conclusion

Knowledge engineering in all its different aspects discussed in this paper is the foun-
dation for making machine learning based systems more intelligent and enabling Data
Science [28, 49]; it provides the structured and interconnected knowledge that enables
intelligent systems to access, process, semantically integrate, interpret, discover, reason
about knowledge and making informed decisions. In this sense, knowledge also builds
the foundation for explainable systems that will help us get away from today’s black

10 https://www.w3.org/TR/prov-o/
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box systems that demand blind trust. In this vibrant area, research is currently moving
very fast in knowledge engineering as well as machine learning. While today we are
still witnessing big challenges and open issues – as sketched in this paper – it will be
interesting to witness how research will progress in the next couple of years.
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Abstract. This paper introduces into ethical issues raised by AI systems and pro-

posed solutions to address them. It uses introductory exercises that present an 

ethical issue and questions that provide guidance for study and debate. The in-

cluded topics address fairness and bias, user information, trolley problems, and 

freedom of speech. The paper concludes with a brief introduction into ethical 

frameworks and proposed tools to address ethical issues of AI systems.  

Keywords: First Keyword, Second Keyword, Third Keyword. 

1 A Short Introduction 

1.1 AI Ethics 

If it is true that – as Arthur Schopenhauer suggested already in 1840 – compassion is 

the basis of morality, then AI is clearly facing a challenge that is too big [1]. Given the 

current state-of-the-art, compassion simply is not a stronghold of artificial systems. 

However, as AI systems increasingly participate in processes of decision-making about 

humans, it becomes increasingly necessary to ensure that such decisions are taken re-

sponsibly and that they are beneficial for individuals and society. This has created an 

enormous interest in the ethics of AI. This paper provides a short introduction into some 

key concerns, approaches, and future challenges using a set of six exercises relevant for 

AI ethics. Let us first briefly introduce ethics. 

The philosophical discipline of ethics is concerned with questions about what a per-

son should do from the point of view of morality. The US American moral philosopher 

Bernard Gert defined morality as “an informal public system applying to all rational 

persons, governing behaviour that affects others, and includes what are commonly 

known as the moral rules, ideals and virtues and has the lessening of evil and harm as 

its goal.” [7] In this short characterization, Gert makes several important distinctions 

that are worth pointing out: 

- As an informal public system, moral judgments are usually those of a social 

group such as a tribe, village, or a nation state. They arise from often tacit ex-

pectations about how people should act. This system may include widely held 

believes (e.g., it is bad not to help people in need) or religious rules (e.g., ‘thou 

shalt not steal’) that are somehow formalised but may require contextualisation 

and are often not directly enforced. Legal regulation partially overlaps with 
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widely help moral beliefs. However, there are laws that are not usually consid-

ered morally relevant, e.g., regulations concerning the shapes and symbols used 

for traffic signs. And vice versa, the law does not address everything morally 

relevant, such as the question when we should tell the truth to our friends or, 

perhaps more relevant, what precisely constitutes bad business practice from a 

moral point of view.  

- Morality according to Gert concerns rational persons. It is therefore not directly 

applicable to children, the mentally disabled, to animals, robots (unless we think 

they are rational persons), and perhaps intoxicated people. In ethics, the focus 

is on people with the ability to make judgements about the consequences of their 

actions for others. 

- Common virtues include truthfulness, courage, honesty, impartiality, reliability, 

and other character traits that we would often classify as positive or beneficial. 

Ideals are generally accepted ideas – often about our society and its institution 

– such as fairness or justice. Some common harms include death, pain, disabil-

ity, loss of freedom, loss of pleasure, loss of rights and many more. What pre-

cisely constitutes a moral harm may drastically change over time. For example, 

the degree to which a person should be covered when going for a swim on a 

public beach has kept changing over the centuries and shows great regional var-

iation. 

 

1.2 Modelling people 

The art and science of modelling lies at the heart of computer science. Different from 

other fields of science and technology that are often focused on a particular type of 

system (e.g., living systems in biology), computer science is extremely broad in the 

type of models that it uses and in with what these models are concerned. Models can 

be explicitly formulated, e.g., a linear model of a specific part of a physical or economic 

system. Often, they are more implicit, e.g., when a computer program operates a device 

and only implicitly is based on a model of the device’s environment or its interactions 

with users. Computer programmers may have to model cars, homes, financial markets, 

power plants, airplanes as well as cows, trees, or novels. Most ethical issues, however, 

arise when modelling people.  

An important reason for modelling people is to systematically organize knowledge 

about them. Such knowledge may form the basis of categorising people into similar 

groups. Another reason is to predict something about them, for example the language 

in which they would like to be given information or the style of music that they are 

likely to appreciate. Thirdly, it can be useful to control the behaviour of people, for 

example in guiding them to a desired location or improving their fitness.  

The straightforward fact of modelling people often already creates ethical issues. At 

the simplest level, even striving to know something about a person can be considered 

unethical. There may be situations where it is morally more appropriate not to know a 

person's gender, income, sexuality, political opinion etc. In fact, such aspects are often 

considered private and are debated in discussions about privacy protection. A good rea-

son for keeping such information private is the fact that knowing certain facts about a 
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person can have disadvantageous consequences for the person. Knowing a person’s 

sexuality can have severe consequences for how that person is treated in certain situa-

tions or in parts of the world. Perhaps even simpler, modelling people’s gender as only 

binary can lead to undesired classifications, misaligned expectations about the person, 

or unsuitable functionality, for example for transgender people. Generally, categorising 

people may make people feel unduly classified or reduced to ‘just a mere category’.  

AI models are often used for deciding on people, e.g., in a bank loan application, a 

job search, or an insurance application. Consequently, AI decisions based on models of 

people and on categorisation can lead to denied loans, not getting a job, on an increased 

insurance premium. Finally, controlling people’s behaviour can easily be abused and 

become immoral, for example when exposing people to unwanted advertising or limit-

ing people’s autonomy.  

 

2 Bias and Choice 

2.1 Fairness 

A. Assume that a data-driven creditworthiness rating system has been trained 

on past data. In the past, significantly fewer women asked for a loan, also 

they proved less likely to pay it back.  

a. Which ethical issues may arise when using the system? 

b. Assume that you would like to correct for potential bias with the 

aim to “treat men and women equally”. Would it be better to look 

for a “nearest neighbour” in the data so that we treat a woman like 

a “similar” man, or to ensure similar approval rates between men 

and women? 

c. Will the aim of ensuring similar approval rates lead to the same re-

sults as ensuring similar disapproval rates for men and women? 

 

Let us start with the observation that (machine-learning based) AI models are usually 

trained on historic data. As the future (or in fact the present) may be different from the 

past, there will always be the issue of model validity, i.e., is the AI model still a good 

model for the situation or have the underlying characteristics of whatever is modelled 

changed? In fact, we can never be absolutely sure that an AI model is fully correct, 

especially when modelling complex systems or humans. We can only try to evaluate 

model correctness to ensure that the model is still applicable. 

But even when the model is correct in terms of the historical data and it is, in prin-

ciple, still a valid model of the current situation, it may deliver results that are societally 

or ethically inappropriate. The following figure describes a common situation where 

the AI model correctly grasps past data, but applying the model directly leads to unde-

sirable consequences. Just because in the past most engineers were men and this may 

still be the case, it does not follow that we should only select men or an open position 

in engineering. In fact, it may be a good idea to specifically select more women as 
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engineers if we would like to realize a balanced representation of women in engineering 

in the future.  

 

 
Figure 1 The design of AI models often relies on historic data. Decisions based on such models 

will tend to continue the past into the future. In this example, a system that supports hiring deci-

sions for engineers based on historic data may choose men over women given the historic fact 
that more women than men were engineers in the past.  

Note that such a situation is usually called a bias, because the model is skewed to-

wards men as engineers. This does not mean that it is wrong, it just means that it is 

ethically, socially, or politically questionable. On a positive note, AI models may help 

to make certain societal issues explicit. For example, it is not uncommon that certain 

types of bias in data are detected or at least debated following the implementation of an 

AI model. Decisions to ‘correct’ such biases are often political or societal agreements 

to overcome existing and unfair tendencies with the help of explicit policies, e.g., af-

firmative action. This is especially important as AI models will be used for the future 

and without such correction may lead to the perpetuation of trends that are considered 

unethical or societally unwanted.  

 

2.2 Model Cards 

B. Discuss the advantages of model cards (i.e. information about how a model 

was trained, training data, and potential limitations). Where are the disad-

vantages and limits?  

How do you think such information would help the following users of an AI 

system: 

- A medical doctor using an X-ray classification system? 

- A human resource manager classifying job applicants? 

- A consumer using a music recommendation system? 

 

A suggestion that has been made to increase the transparency of AI systems is to pro-

vide so-called model cards that contain details about the data used for training or char-

acteristics of the AI model including, for example, potential bias, benchmarks across 

different cultural or demographic groups. Model cards can also provide information on 

application contexts and procedures used for the evaluation of the AI model. The OECD 

Past

•Mostly 
male 
engineers

Model

•Engineers 
are 
mostly 
men

Action

•Choose 
men as 
engineers

Future

•Mostly 
male 
engineers
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includes model cards in its catalogue of tools and metrics for trustworthy AI.1 Model 

cards can be useful for users, policy makers, or AI and machine learning practitioners.  

While this may provide relevant information in important situations, it also means 

that there can be a shift of responsibility to the user of the system. The information 

provided for an AI model may also be quite difficult to interpret for laymen. While an 

expert, e.g., medical doctor, may find it useful and is perhaps capable to understand 

potential biases or overall quality assessments regarding model correctness, such infor-

mation may be of little help to consumers, for example. 

 

 

2.3 Trolley Problem 

C. The Trolley problem is often formulated as follows:  

A tram is running out of control and threatens to kill a group of people located 

on the track. There is a person near a lever who could flip the switch and 

divert the train on a different track so that only one person would be killed. 

Should the person near the lever pull the lever to divert the runaway trolley 

onto the side track to save the five people from being killed at the price of 

killing just one? 

Now consider a hospital emergency unit. A young, otherwise healthy man 

arrives after an accident with broken legs. At the same time, there are five 

transplant patients in the hospital of which two need new kidneys, one needs 

a lung, one a heart, and one a liver - all of which would match the young man. 

Do you think the young man should be killed to provide the organs? 

 

- Discuss the similarities and the differences between the two cases! 

- Discuss the similarities and differences of the Trolley problem in 

modelling the situation of autonomous vehicles! 

 

 
Figure 2 A person is depicted at a switch that can divert an out-of-control tram to killing 

only one person instead of five people if no action is taken. (Original figure:  McGeddon Vector:  

Zapyon, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons) 

 

 
1 https://oecd.ai/en/catalogue/tools/model-cards   
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The Trolley problem has become very popular in discussing AI-based decision mak-

ing. It is often referred to in discussions about autonomous driving or in medical deci-

sion-making. The problem is also used in ethics to explain different ethical schools of 

thinking, e.g., consequentialist versus deontological ethics, or the moral obligation to 

act versus inaction.  

 

One possible approach to answering the Trolley dilemma is to take a utilitarian per-

spective and ask, what would be the greatest benefit for the largest number of people? 

In such a view, the focus is entirely on the consequences of the action. Neither does it 

consider certain rules that may govern operating switches or general rules about killing 

people, nor does it consider any character traits of the person at the switch. The focus 

is solely on the result. From this point of view, the only thing that counts is to limit the 

damage done as much as possible and to accept a single person dying rather than five. 

In addition, we may want to regard the flipping of the switching as a duty to act rather 

than not to act.  

An entirely different perspective is what is called “deontological” where we assume 

that killing is intrinsically bad. Hence, the person at the switch has no duty to change 

the track as this would lead to killing a person. In this view, we must not count up lives 

against other lives, i.e., killing one is as bad as killing five. This view of ethics relates 

to a line of thinking that is usually associated with Immanuel Kant and his idea that we 

should only follow rules that we could consider as general laws of action.  

While many people may consider the consequentialist position as straightforward, 

this changes as soon as we start adding information and changing the situation only 

slightly. A common variation is the introduction of a “fat man” instead of the switch. 

We now assume that there is big man on a bridge that could be pushed onto the track 

and that this would also keep the five people from being killed. Interestingly, now some 

people would no longer regard pushing the man on the track to stop the tram and save 

the five people as either morally good nor a duty of a person. The fact that in this situ-

ation we would have to directly interact with the person seem to change the moral char-

acteristic, at least for many people. 

Another even more drastic change is the hospital situation mentioned above. Only 

very few strict consequentialists would suggest killing a young man with a broken leg 

and to use him as an organ donor to save five others. We may assume that this is not 

just morally inacceptable for many, but it is also undermining the idea of a hospital as 

a safe place to go to in case of injuries. These few examples already demonstrate how 

much our human moral decision-making depends on subtleties of the situation. Chang-

ing just small aspects such as the age of the people, family relations among them or 

between the person at the switch and the potential victims will add more complications 

and changes in moral decision-making. 

Finally, there is the question of whether the Trolley problem can be used of a model 

for autonomous driving [2]. The obvious analogy would be a self-driving car that faces 

a situation where it could choose to kill a group of pedestrians or the driver of the car. 

It is important to point out that this is hardly a realistic scenario. Firstly, such situations 

will be extremely rare. Secondly it is unlikely that a car’s predictions would be suffi-

ciently reliable to predict deaths and offer any choice in real-world situations. Thirdly, 
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it may be entirely impossible to sell a car that does not protect the driver in all such 

situations. All of this means that there are serious doubts about the practical applicabil-

ity of the Trolley problem to real-world situations. A possible answer to the question 

posed in the Trolley problem is therefore to reject the question. Not only is it unrealistic, 

but it also suggests that the problem has a technical solution and it therefore implies 

that we should aim at a technical solution.2   

 

 

2.4 Freedom of Speech 

D. Discuss the following image from the point of view of an AI-based image 

classification system. 

- What is this image about? Provide a range of perspectives! 

- Do you think this image is pornographic? If so, what are the reasons 

for such a judgement? If you think it is artistic, why? 

 

 
 

Figure 3 Michelangelo Marisi da Caravaggio: Amor vincit omnia, ca. 1602. ( Public domain, 
via Wikimedia Commons,) 

 
2 Another way to answer the question has been proposed by Tim Henning. We should (ceteris 

paribus) save a larger number of people if / because this is what those concerned would choose 

given a fair voting procedure. x 
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There have been intensive debates about wrongful, illegal, or inappropriate content 

in social networks and its damaging impact, e.g., on democratic values or the results of 

elections. Online comments can also have negative impacts on individuals when they 

are insulting, wrongful or contribute to bullying. As a technical approach to solving this 

problem, AI has been suggested for the identification and classification of problematic 

online content [5]. It is widely used in online networks for the classification of texts, 

videos, and even music with the aim to delete content that is considered wrongful, ille-

gal, or inappropriate.  

There is a broad debate about inappropriate content and its removal with many dif-

ferent and interrelated aspects making this a complex problem. The first point to con-

sider is whether private platforms should be considered public spaces. This is relevant 

for discussing to what extent such platforms should be held responsible for the type of 

content that is published. It has been suggested, for example, to consider differences 

between small platforms, e.g., from a local news web site, that do not reach millions of 

people in the way that some of the very large platforms such as Facebook YouTube, or 

LinkedIn do.  

Another question relates to what type of content should be concerned. In many coun-

tries, there are laws that regulate certain types of content making its publication clearly 

illegal, e.g., advertising terrorist acts, denying the holocaust, public insult, infringement 

of intellectual property etc. However, there have also been calls for limiting so-called 

“harmful” content. This is a much more problematic content as it is often not clear what 

should be considered harmful and who should have the power to define it. What some 

may consider strong but necessary language to identify political wrongdoing, other may 

consider inappropriate and harmful for society. Obviously, these are not only moral but 

also political questions.  

AI can be used to identify unwanted key words and certain types of content. But it 

is important to note that the technology used for the identification of illegal or inappro-

priate content is far from perfect. It will wrongly identify wrongful content as appro-

priate and miss the identification of illegal content. Consequently, this raises significant 

questions about complaint and re-instantiation procedures as well as questions about 

potentially negative consequences for people who are falsely accused of having pub-

lished bad content. While many states are introducing regulation for the deletion of 

content, the question of complaints and rights to publish in large networks has received 

less attention. 

Deletion of content always raises concerns regarding censorship, both in democratic 

and undemocratic states. Using AI for content moderation therefore poses important 

questions about the power of online platforms to explicitly or tacitly delete, annotate, 

or rank content. This includes questions of publishing information about deleted con-

tent, responsibilities to monitor content, check the factuality of content, facilitate com-

plaints etc. An important question from a democratic perspective regards the collabo-

ration of large online platforms with dictatorships and parties with specific political 

interests. 

In democratic states, the right to publish online relates to Freedom of Speech. This 

is often considered a core and important basic right that must be fundamentally pro-

tected. For example, the European Court of Human Rights has ruled that language used 
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in public opinion sometimes needs to be strong. This might be considered against the 

current trend where there are strong calls to also regulate “harmful” content in large 

networks.  

Finally, these issues are very similar to more recent developments regarding gener-

ative AI such as ChatGPT. Again, the question is to what extent should we regulate the 

utterances of chatbots as concerns content that can be considered illegal. Potential is-

sues range from infringing personal rights of people (e.g. insult) to plagiarism, misin-

formation, illegal content etc. The difference to social network content moderation is 

that in chatbots the texts are automatically generated for a user. This poses the question 

to what extent users should be held responsible as well.  

 

3 Ethical Frameworks 

Given the many ethical challenges of AI systems, it is unsurprising that there have been 

many proposals how to address them [3]. A large number of publications therefore ad-

dresses ethical principles and proposes frameworks for addressing them. These frame-

works include aspects such as the following: 

 

- Transparency (including explainability, understandability, disclosure etc.) 

- Justice and fairness (including consistency, inclusion, equality, bias, diver-

sity, remedy, redress etc.) 

- Non-maleficence (security, safety, precaution, prevention, integrity etc.) 

- Responsibility (accountability, liability) 

- Privacy 

- Beneficence (well-being, peace, social good, common good) 

- Freedom & autonomy (consent, choice, self-determination, liberty, empow-

erment) 

- Trust 

- Sustainability (environment, energy) 

- Dignity 

- Solidarity (social security, cohesion) 

 

More than 100 ethical frameworks for AI have been developed and many of them 

are very similar. While they are useful for structuring the issues, they do not provide 

clear recommendations on how to design systems. Indeed, several aspects of such 

frameworks provide significant research challenges. As an example, consider the case 

of “explainability”: Explainable AI (or “XAI”) has turned into a whole subfield of ma-

chine learning with its own conferences and a growing number of publications. This 

clearly indicates that the issue is complex and may require significant research on its 

own. 

There are many proposed techniques for addressing ethical issues in the literature 

ranging from algorithms to labels, data bases, communities, standards etc. [4].  Many 
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of these are in fact useful, but their application depends on the application, the type of 

model, data, and training algorithms etc. There is no automatic or even straightforward 

way of implementing a “fair AI” system and it is questionable what this precisely 

means. Just consider aspects such as “justice” or “fairness”. These are concepts that 

require not just algorithmic or mathematical considerations. They really are societal or 

political concepts that include decisions about what a society considers to be “fair”. The 

scientific AI literature sometimes seems to be overlooking this when focusing on 

mostly algorithmic solutions to “fair AI”. But questions such as what an acceptable bias 

of a system is and what is unacceptable or which actions should be taken to overcome 

bias in an AI system require decisions that go far beyond just mathematical considera-

tions [6]. 
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1 Natural Language Processing (NLP)

This contribution provides an overview of computational methods for ”under-
standing” or generating natural language. By putting understanding under quotes,
we want to stress that what is called understanding in Natural Language Pro-
cessing (NLP) is qualitatively very different from what a human commonly would
interpret as understanding. The overall goal of NLP is to process/analyse and to
generate human language with computers. The goal in natural language analysis
is to build useful representations from natural language input, and in natural
language synthesis or generation, the goal is to produce natural language output
from (structured) representations. The massive challenge we still face in NLP is
to make the meaning (semantics, pragmatics) of human language accessible to
computers.

1.1 Ambiguities

A major challenge in NLP is ambiguity, i.e., the same text can have very dif-
ferent meanings, and different texts can have the same meaning. As regards
the latter, think of different wordings of summaries of the same key facts or
bits of information of a document. Differences in language use may also arise
from socio-linguistic differences, from colloquial and informal language. This is
specifically the case in social media (and in emails), where code and language
switching, i.e., mixing standard language and dialect, and also mixing languages
is prevailing. In the following, we will give a number of examples for natural
language ambiguities:

Lexical ambiguities The sentence He went to the bank may be interpreted in
different ways, depending on the reading of the word bank which either may refer
to a savings bank or a river bank. Moreover, a reference to savings bank may
relate to the office building of the bank, but also to the bank as an institution,
and we understand a sentence such as She talked to the bank. in a way such that
she talked to a person with an official function in the bank.

⋆ Supported by the Austrian Research Institute for Artificial Intelligence (OFAI).
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Part-of-speech ambiguities There are also ambiguities due to the syntactic cat-
egories a word can have In NLP, syntactic categories of words are called parts-
of-speech (pos). As an example, see the potential headline Teacher Strikes Idle
Kids (cred. Dan Klein) where we have two words strikes and idle for which we
find different pos when we look up a dictionary: strikes can be a noun or a verb
and idle can be a verb or an adjective. Accordingly, Teacher Strikes Idle Kids
may mean the due to strikes of teachers kids idle with strikes being interpreted
as a noun and idle as a verb. When we interpret strikes as a verb and idle as an
adjective, the meaning changes to ’a teacher hits who idle’. You may also have
noticed that strikes is also lexically ambiguous: strike meaning work stoppage
or hitting.

Structural ambiguities Depending on how you parse the sentence If you love
money problems show up, you will end up with different readings: ’if you are
a money lover, problems will occur’ (in this case the noun money functions as
object to the verb love and problems is the subject to the verb show up) or ’if
you are a lover of money problems, you should come here’ (in this case money
problems is interpreted as a compound noun and is the object of the verb love,
whereas the verb show up is interpreted as an imperative). Another important
structural ambiguity is related to PP-attachment. Consider for instance the sen-
tence She wrote a report on Mars. Is the report written while being on Mars or
is it a report about Mars? Similarly, a headline such as Cop kills man with knife
can mean that the cop has the knife and uses it to kill the man, or the cop kills
the man who has the knife.

Anaphoric reference Consider the following two sentences Mark saw the men
with the telescope. He had brown hair. In the first sentence, we have a structural
ambiguity due to PP-attachment of the prepositional phrase (PP) with the tele-
scope, i.e., who had the telescope – Marc or the man? For the second sentence
we need to find the referent for the pronoun he in order to know who had brown
hair – Marc or the man?

Multi-word expressions See the sentence they wanted to do it but they got cold feet
which made them lose their face where got cold feet is a multi-word expression
and means ’become frightened’ as opposed to the literal meaning of getting cold
feet as in They got cold feet because their shoes were too thin. Distinguishing
whether something should be literally interpreted or in a figurative sense (as a
multi-word expression) is hard for computers.

Pragmatics an utterance such as It is cold. can be both interpreted as a factual
statement or as a request for action, e.g., to close the window, to turn on the
heating, to pass on a plaid, etc. The intended meaning is often clear from the
(situational) context or with background knowledge. For a system to deal with
it, this extra knowledge needs to be somehow accessible or available.
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1.2 Two Views on Natural Language

The Linguistics View The linguistics view sees natural language with a strat-
ified view from speech signal to text along the following steps:

– Phonetic form is the visual representation of sounds, including including
phonemes as units of sound (/p/, /t/, /k/, . . . ), and syllables as units of
pronunciation (/wa-ter/, /un-for-giv-ing/). For a notation system, cf. the
International Phonetic Alphabet (IPA).1

– The morphological structure: Morphemes as building blocks for representing
the relation between words (word stems or types) and their inflected forms
(tokens): e.g., build (stem/type) – build-ing, build-er, built, build, build-s
(forms/tokens); forgiv (stem/type) – forgiv-e, un-forgiv-ing, forgave, forgiv-
en, forgiv-ing (forms/tokems).

– The syntactic structure of sentences and phrases as their building blocks,
e.g., an unforgiving environment (noun phrase, NP), is unforgiving (verb
phrase, VP), in the deep see (prepositional phrase, PP), The deep sea is an
unforgiving environment. (sentence, S).

– Text as a sequence of (related) sentences: see for instance the following two
sentences The deep sea is an unforgiving environment. This is why we should
not stay in it.. The first sentence introduces the topic or theme (deep sea)
and the rheme (unforgiving environment),2 The second sentence formulates
as an entailment not to stay in the deep sea. Both sentences together ex-
press a causal relation between deep sea as unforgiving environment and the
conclusion not to stay in the deep sea, with it in the second sentence being
an anaphoric reference to deep sea in the first sentence. Explicitly modelling
these kinds of relations on a computer, e.g., with rule-based approaches, is
very hard. Machine learning models which take large contexts into account,
however, stand a good chance to implicitly modelling such relations.

A Computational, Practical View From a more computational, practical
perspective, text is viewed as a sequence of (Unicode) characters. Words or
(sub-word) tokens are (usually) the relevant parts of the text. A document is
a unit of text that somehow belongs together. An article, a book, a page in a
book, a Tweet, etc. can have associated meta-data sch as author, publishing
date, keywords and many more. A corpus is a collection of documents that
belong together. With the advancement of machine learning (ML), linguistics
has increasingly taken a backseat in natural language processing.

1 https://www.cambridge.org/features/IPAchart/
2 Note, theme and rheme are terms from information structure, [48].

Natural Language Processing. An Overview 78



4 B. Krenn, J. Petrak

2 Approaches to NLP and NLP Tasks

2.1 Approaches

There are two major approaches to NLP, the classical pipeline-based divide and
conquer approach and the end-to-end approach. Furthermore NLP applications
can be differentiated into applications for analysis and applications for synthesis.

Fig. 1. NLP Pipeline: Figure taken from https://spacy.io/usage/linguistic-features,
”Hooking a custom tokenizer into the pipeline“.

Classical divide and conquer breaks up a complex task into smaller ones. Spe-
cialised methods are developed to solve the individual tasks, whereby there can
be many different possible approaches (rule-based, machine learning based or hy-
brid) to solve the overall task. The methods for solving the individual sub-tasks
are combined into a ”pipeline” to solve the superordinate task.

End-to-end A single (deep-learning based approach) does the whole task from
input to output all in one go. However, some NLP tasks such as tokenization
and some machine learning tasks, including data-loaders and batching, are still
needed.

Ananlysis and Synthesis Typical examples for text analysis applications are text
classification (e.g. spam detection), and Information Extraction (IE) in order to
extract structured information from text, to find mentions of names, organiza-
tions, relationships, events. Natural language synthesis or generation refers to
content generation from structured information (e.g. weather forecast writing),
and more recently to large language models (LLMs) which predict what comes
next given a preceding text. Moreover, question answering (QA) and machine
translation (MT) comprise both, methods for analysis and generation. In QA a
natural language query is analysed and an answer in natural language is gener-
ated. In MT the textual input in source language is analysed and it pendant in
a target language is generated.

2.2 Common NLP Tasks: Overview List

The following list is meant to give a brief overview of the most NLP tasks. In
the next sections, we will look at some of those tasks in more detail.
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– Tokenization: A machine-readable test is noting else than a stream of char-
acters. Tokenization is required to identify individual words which then can
be used for further processing.

– Sentence splitting: Even though, the text is already split into words, sentence
splitting is required to identify individual sentences in the sequence of rep-
resenting a tokenized text. Sentence splitting is a precondition for syntactic
parsing, as the largest unit for a parse is a sentence.

– PoS tagging: Part-of-speech tagging identifies for each word its unambiguous
syntactic category or part-of-speech in the context of the given sequence of
words the word of interest occurs in. PoS tagging requires tokenization as a
precondition.

– Parsing: groups the words within a sentence into syntactic units or phrases.
PoS tagging supports parsing as the parser can already operate on a sequence
of words with disambiguated syntactic categories. However, there are also
approaches to parsing where PoS tagging is integrated in the parsing pro-
cess. Knowing the syntactic structure of words helps to identify the meaning
relations, e.g., what is the verb, what is the subject, what are the objects,
which word modifies another one, and so forth.

– Lemmatization/stemming: is particularly interesting in highly inflected lan-
guages such as German where different full forms relate to the same stem,
see for instance Haus (house), Hauses (house), Häuser (houses), Häusern
(houses).

– Keyword/term extraction: Some words are more relevant for a document
than others. Term extraction is the task to identify these words.

– Entity recognition and disambiguation/linking: Entity recognition refers to
the identification of person, company, product, country, place names. Entity
disambiguation or linking is the task to unambiguously map named entities
identified in a text to real people, companies, etc.

– Reference resolution: is the more general task of identifying who or what
is referenced by a linguistic expression such as a name (e.g., George Bush –
which George Bush?), a pronoun (e.g., she made her choice – who is referred
to by she), a definite NP or PP (e.g., the second husband of the president –
who is the husband, who the president?).

– Topic detection: also called topic analysis, topic extraction aims at assign-
ing topic or theme category labels to individual documents/text of large
collections of text data based on the content of the individual text to be
labelled.

– Relation extraction: aims at identifying relations between entities in a text,
e.g., what is the person’s name, their occupation, to whom is the person
married, and so forth.

– Text classification: aims at assigning pre-defined categories to text.

2.3 NLP Task: Tokenization

Tokenization is the task to divide a sequence of characters into larger meaningful
units (tokens) for further processing. When we want to split a text into words, we
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need to ask ourselves: What is a word? See for instance strings such as it’s, don’t,
data-mining. You also need to consider punctuation, e.g., does a dot belong to
an abbreviation (etc.) or is it a punctuation mark or both (They bought fruit,
vegetables, drinks etc.)?

The most simple, however, not sufficient way to do this is to split on white
space or punctuation. White space does not work for each language, see for
instance Chinese or Turkish or any other language which has sub-word units.
Moreover, languages can have multi-word tokens, e.g. it’s, suntan lotion, New
York Times, kick the bucket, where more than one words are merged into a token
(it’s → it is, or one token comprises several words separated by blanks as it is
the case in English compound nouns (suntan lotion, names (New York Times),
or multi-word expressions (kick the bucket meaning ’die’). Languages can have
punctuation tokens (punctuation marks) and other special tokens, including ab-
breviations (e.g., UNESCO, URLs, @names, email addresses, #multiwordhash-
tags. As a result of tokenization a text is represented as a sequence of tokens
instead of a string of characters including white spaces.

2.4 NLP Task: Sentence Splitting

Sentence Splitting is important in NLP because sentences are a good unit of anal-
ysis: A sentence is a self-contained unit of meaning relations, it is syntactically
complete, and typically contains subject, predicate, object(s), modifiers. See for
instance the following sample sentences and their internal structure represented
by labelled brackets:

Sentence: The house is green.

Syntactic structure: ((the house) subject (is green) predicate) sentence

Sentence: The green house belongs to my cousin.

Syntactic structure: ((the green house) subject ((belongs) predicate (to my
cousin) object) sentence

Splitting text into 1 or more sentences is sometimes good for for technical
reasons, e.g., for parallelization or if there is limited input size. The most sim-
plistic way to split a text into sentences in to split on on double new lines and
on punctuation, e.g., full stop, exclamation mark, question mark, however, you
need to take care of abbreviations with dot. Therefore there are also more so-
phisticated methods which make use of some of the sub-tasks and approaches
we discuss later in the text.

After sentence splitting, the text may get represented as a sequence of sen-
tences. Each sentence being a sequence of tokens: (((After) (sentence) (splitting)
(,) (the) (text) (may) (get) (represented) (as) (a) (sequence) (of) (sentences) (.))
((Each) (sentence) (being) (a) (sequence) (of) (tokens) (.))) In comparison the
the structured examples above, there is no information about the syntactic struc-
ture of the individual sentences yet.
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2.5 NLP Task: Stand-off Annotations

From the above examples you already see how clumsy it is to use nested lists.
Therefore stand-off annotations have been introduced as an alternative com-
prising several sets or lists of annotations which are linked to the original text
via start, end offsets in the original text document. Some variations use a to-
ken index instead of char offsets. Apart from the start-end offset annotation,
there are type-specific annotations with features providing information about
the given text, e.g. a specific token is a word of type noun, a specific sequence
of tokens is a noun phrase or a person name. There may be arbitrary many and
arbitrarily overlapping stand-off annotations grouped into sets for a given text.
Stand-off annotations can be linked to form a tree or graph, and the ones useful
for specific processing tasks can be deliberately selected. Details differ between
implementations, for examples see SpacY, GateNLP, BRAT.3 For an example
of an annotated document with several types of stand-off annotations from the
GateNLP framework see https://tinyurl.com/stoffann.

Fig. 2. Stand-off annotations GUI.

2.6 NLP Task: Part of Speech (PoS) Tagging

For further processing, We need more information about each word/token, such
as what morpho-syntactic category (part-of-speech, PoS) it has, is it a verb or a

3 https://spacy.io/usage/linguistic-features, https://gatenlp.github.io/python-
gatenlp/annotations, https://gatenlp.github.io/python-gatenlp/annotationsets,
https://brat.nlplab.org/standoff.html
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noun, etc. Ideally, we also want to have additional morpho-syntactic information
such as gender, time, singular/plural, case. Mere lookup in a dictionary does not
work well because of ambiguities, e.g., duck can be a noun referring to the animal
or a verb meaning crouch down. The aim of PoS Tagging is to disambiguate a
word’s syntactic category according to the given textual context.

Machine learning is used for developing PoS Taggers. To train a tagger, first
of all a pre-annotated corpus is required where each word is annotated with
those features relevant for training a machine learning (ML) algorithm. Second,
a suitable ML algorithm for training the Tagger model needs to be selected, the
model needs to be trained and tested.

1 Seriously seriously ADV

2 : : PUNCT

3 do do AUX

4 not not PART

5 waste waste VERB

6 your you PRON

7 time time NOUN

8 . . PUNCT

Fig. 3. CoNLL-U format example.

PoS Tagging: Corpus and Tagset Examples Several Treebanks with dif-
ferent tag-sets and for different languages exist. Treebanks are collections of
sentences annotated with PoS and syntactic structure, see for instance the Penn
Treebank for English ([35], [52]) or the TIGER Treebank for German [8] and
its conversion into universal dependencies annotation.4 A universal dependen-
cies (UD) annotation is useful because of the harmonised PoS tagset applicable
to many languages.5 Corpora in UD format exist for many languages, with the
CoNLL-U annotation format being the most widespread. 6 In Figures 5 and 4,
you see examples for the Universal and and the Penn PoS Tagsets. Apart from
the core part-of-speech categories shown in Figure 5 the UD tagset comprises
additional universal features to distinguish further lexical and grammatical prop-
erties of words.7

POS Tagging: Features A number of features is used in PoS Tagging. This
ranges from features representing information related to the current token to

4 https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger/,
https://github.com/UniversalDependencies/UD German-GSD

5 https://universaldependencies.org/
6 https://universaldependencies.org/format.html
7 https://universaldependencies.org/u/pos/
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Fig. 4. Penn Treebank POS tagset (from [35]).

Open class words Closed class words Other

ADJ ADP PUNCT
ADV AUX SYM
INTJ CCONJ X
NOUN DET
PROPN NUM
VERB PART

PRON
SCONJ

Fig. 5. Universal POS tags (https://universaldependencies.org/u/pos/).
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information about the left and right context of the current word (token). In-
formation at token level comprises whether the token is the start or end of a
sentence, whether it is a punctuation mark, whether the token contains a num-
ber, starts with an upper-case character, is all upper case, contains a hyphen,
and so forth. In addition, features from previous and succeeding n tokens (con-
text window) are taken into account. Moreover, [55] showed a positive effect on
tagging accuracy when adding predictions for PoS-tags of previous word(s) as
additional features.

With these features we have a broad range of information about a token and
its context, however, the word itself, i.e., its lexical representation is not yet
in our feature set. Languages comprise tens of thousands of lemmata (stems or
base forms) and many more full forms. How can this information be added as a
feature in an efficient way? E.g.: Give each word a number? This would require
tens of thousands of numbers, in other words we would define a feature with a
huge value set. An alternative would be one-hot features, which, however, would
require tens of thousands of these features. So there is actually no gain, yet. An
alternative idea is to group words into k clusters and then use one-hot encodings
for the clusters, leading to k one-hot features instead one one-hot feature per
word. An example for a clustering algorithm is Brown Clustering which we will
introduce in the following.

Brown Clustering is a hierarchical, agglomerative clustering algorithm [9]:

k∑

c1=1

k∑

c2=1

p(c1c2) log
p(c1c2

p(c1)p(c2)

The idea behind is to maximise the mutual information of cluster bigrams.
As a consequence, Words that appear in the same context tend to get clustered
together such as ’Friday, Monday, Thursday, weekends, Sundays’, ’people, guys,
folks, chaps, doubters, blokes’, ’down, backwards, ashore, sideways’, etc. This
idea works, because the contexts of words give important information about the
word itself! Each cluster represents a ”word type/class” or ”context class”, and
the cluster number can be Used as a feature, represented as number or one-hot
vector.

POS Tagging: Machine Learning Use the best ML algorithm of the time,
e.g., logistic regression, decisions trees, random forests; support vector machines
and other large margin algorithms, i.e., algorithms that are able to identify the
hyperplane that represents the largest gap with the fewest exception (also called
margin) between two classes. Different algorithms exist, handling numerical ver-
sus categorical features, handling very many and sparse features, with different
model complexity, etc. Models are created that map from the features of the cur-
rent, preceding and following tokens to a PoS tag for the current token, whereby
each token gets classified separately.

Sequence labelling or sequence tagging algorithms are used to include depen-
dencies how likely each PoS tag follows another one, in order to cover properties
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of natural language such as a determiner (DET), pronoun (PRON) or adjective
(ADJ) most often precedes a noun (NOUN), e.g., the dog (DET NOUN), my
dog (PRON NOUN),black dog (ADJ NOUN). Which is a reflection of the syn-
tactic structure of the (here the English) language. Lafferty et al. 2001 [32], for
instance, use (linear-chain) Conditional Random Fields to cover these surface
relations for PoS tagging.

Find argmaxy p(y|x) (using Viterbi algorithm). Whole sequence to be PoS
tagged gets labeled in one go!

2.7 NLP Task: Word representations

Finding good word representations which make it easier to deal with the meaning
of words (e.g. make it easier to group words with similar meanings is crucial
in NLP. As we already discussed, Brown clusters are helpful as those clusters
provide a grouping that is related to the meaning of words, but can we represent
words in a better way where even more aspects of meaning can be captured?

Bag of Words (BoW) Inspiration comes from Information Retrieval (IR):
Represent a document by a vector with n elements, n = number of different
words (word forms) in the corpus the document is part of. For each word in
the document, the document vector contains at the ith element of the vector
representing all words of the corpus some numerical information about the word,
for instance, an indicator (0, 1) whether the word occurs in the document, or
the term frequency (= number of occurrences of the word in the document). For
illustration see Table 1 depicting the vectorization of a toy corpus comprising 3
documents D1 to D3. Note: The BoW vector of a single word is a one-hot vector,
e.g, the vector for mouse in our sample corpus is 0 1 0 0 0 0.

Documents Words in corpus: the mouse jumped table on under

D1: the mouse jumped D1 vector: 1 1 1 0 0 0
D2: the mouse jumped on the table D2 vector: 1 1 1 1 1 0
D3: the mouse jumped under the table D3 vector: 1 1 1 1 0 1

Table 1. Vectorization of a toy corpus comprising 3 documents D1 to D3; words
occurring in the document are represented with 1.

However, we still have problems with this kind of representation: 1. in a
real example we have tens of thousands of elements per vector; 2. there is no
information about how the words occur in sequence, which means we are missing
out crucial information, see for instance the two texts bad, not good at all and
good, not bad at all which have the same BoW representation but an opposite
meaning. A remedy for problem 2 is to use bag of n-grams instead of BoW: use
one feature per e.g. bigram good not, not bad, etc. which, however, increases our
problem 1. So we need to do better!
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Again we use inspiration from IR: Whereas we initially represented each
document of a corpus by a BoW vector, the corpus can as well be represented
by a matrix with words in one dimension and documents in the other dimension
where the value shows how often word i occurs in document j. Each document
is represented by a vector of words (BoW), each word is represented by a vector
of documents. Documents can be compared by finding the similarity between
their word vectors, and words can be compared by finding the similarity of their

document vectors. To do this usually cosine similarity is used:
v1v

⊤
2

||v1|| ||v2||
Unfortunately, these term/document matrices are huge, mostly sparse and

very redundant. Therefore, rank reduction is called for! Singular Value Decom-
position (SVD) is a widely used means in this context: Use SVD and choose the
top k singular values. Latent Semantic Indexing (LSI) then employs the SVD to
reduce the dimensionality of the original vector and, thus, represents documents
as k-dimensional vectors of ”concepts”, i.e., words represented by k-dimensional
vectors. This leads to vectors of dimensionality in the hundreds instead of hun-
dred thousands to represent words. These vectors are called ”dense” word vectors
or ”word embeddings”. In the following, we look more closely into word embed-
dings.

Word Embeddings A problem is that the dense vectors described above pro-
duce word embedding from word occurrences over a whole (possibly large docu-
ment), while the local context is particularly important! So the question is, can
we create word embeddings based on the co-occurrence of words in their local
contexts within a corpus?

Mikolov et al. 2013 introduced with Word2Vec an engineering approach to
the problem. They used a neural network to create embeddings (Mikolov2013).
They introduce Continuous Bag of Words (CBOW) predicting the center word
of a context window from its neighboring words, and Skip-Gram: predict the
neighboring words from the center word. For both approaches, we can choose
the dimensionality we want, e.g. 200. A simple 1 hidden layer network is used,
with symmetric windows (e.g. 5 word to the right and left). In addition, negative
samples are generated with random selected words which do not occur in the
vicinity of a certain word and which therefore should not be predicted from that
word. Depending on the size of the training set, 2 to 20 words are randomly
sampled which do not occur in the context of the word in question. The learned
network parameters are then used as embeddings.

There is also a mathematical approach: generate a matrix and do dimension-
ality reduction. Many different solutions have been proposed, with Glove [44]
being the most widely used one. Glove works as follows:

Define for a word a context window size and a symmetric (left+right) or
asymmetric (left only) context. This gives us a n ∗ n matrix X where n is
the size of the vocabulary. The Values in the matrix are the co-occurrence
counts of the word and its contexts. What we want embeddings w such that
F (wi, wj , w̃k) =

Pik

Pjk
where the Pik are co-occurrence probabilities. Do a simpli-

fication and conversion to least squares problem:
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n∑

i,j=1

f(Xij)(w
⊤
i w̃j + bi + b̃j − logXij)

2

Use AdaGrad and stochastic sampling of Xij to train. Use W + W̃ as final
embeddings.

Many other approaches exist, e.g. FastText [4] which makes use of internal
structure, i.e., use subword information (character n-grams). This is very helpful
for highly inflecting languages such as German where different inflected forms as
well as compound nouns share subwords. Moreover subwords are useful to infer
the meaning of unseen words .

Word embeddings are useful for solving down-stream tasks (e.g. POS tag-
ging). Similarities in embeddings (closeness in the vector space) follow to some
extent human intuition.

Analogies can be found in embeddings, for instance, the vector for ”king”
minus the vector for ”man” plus the vector for ”woman” is closest to the vector
for ”queen” [37]. However, embeddings also reflect bias in the data: v(”woman”)
+ v(”doctor”) - v(”man”) = closest to v(”nurse”) [5].

2.8 NLP Task: Named Entity Recognition (NER)

The goal of Named Entity Recognition is to find and classify names in text:
person, location, organization, genre name, species name, or other ”chunks” of
text like movie names, book titles, etc.

A supporting task is chunking, i.e., splitting sentences in phrases. This is not
only important for IE but also for subsequently finding relationships between
entities. An entity can consist of 1 to k tokens, see Vienna versus People’s
Republic of China. The need to find named entities anywhere in a text calls for
converting the task to a manageable classification task, see [40, 34] for surveys.

BIO Coding BIO coding is a means to annotate multi-word strings: For each
token, assign a label that shows if the token is outside (O) a NE, is the beginning
(B), inside (I), the end word of an NE (E), a single word NE (S). Many similar
formats, many names: BIO, BIOES=BILOU=BMEWO, etc. See [29] for a list
of BIO codings. See an example for IOB2 coding in Table 2. One can use per
token classification of the code similar to PoS tagging. Chunk boundaries can be
derived from assigned codes. There is also a need to correct invalid sequences,
as the ML classifier is not aware of what label sequences are actually possible
and could e.g. assign an end label without a beginning label or two end labels
in a row. So the output of the classifier has to be cleaned. As with PoS tagging,
CRF can be used to consider the dependencies between labels.

Other Chunking tasks are to find short token sequences of some interesting
type, e.g., noun phrases (NP), verb phrases (VP), prepositional phrases (PP).
Chunking is also useful for more complex tasks, for example in biological event
extraction, e.g. apoptosis induced by the p53 tumor suppressor. Actually in all
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Alex is going to Los Angeles in California
B-PER O O O B-LOC I-LOC O B-LOC

Table 2. BIO coding: example for IOB2 format, with B-PER referring to begin person
name, B-LOC begin location name, I-LOC inside location name, and O outside a named
entity.

cases where it is important to know Which is the head word, i.e., the most
important word, and which other words are attached to it. This is a task for
(dependency-)parsing.

2.9 NLP Task: Parsing

Natural language has has structure (syntax) which follows construction princi-
ples (grammar) regulating how tokens (words from the lexicon) can be combined.
The task in parsing is to analyse a sequence of tokens according to the rules of
a formal grammar. Note: natural languages, formal languages, data structures
follow different formal grammars.

In parsing a tree structure is used (i) to derive structure and meaningful
relations (who is doing what to whom ?), (ii) to disambiguate word categories
(parts-of-speech, e.g., noun or verb), (iii) to disambiguate the nesting of con-
stituents (e.g., PP-attachment).

Natural language parsing uses linguistic knowledge for the structural analysis
of a sentence, i.e., to parse a sentence into a tree revealing its phrasal structure.
Phrase structure is the hierarchical structure of phrasal constituents and words.
It express the linear order of a sentence. Dependency structure, in contrast, links
word pairs by grammatical relations.

Dependency Parsing The aim of dependency parsing is to identify related
words and the type of their relation: head word – relation type – dependent
word (modifies head). Dependency treebanks are used to train respective parsers.
Widely used are Universal Dependency (UD) Treebanks where text is annotated
with Universal Dependency Relations8 and PoS tags from the UD Tagset. Tools
and models for parsing are for instance spaCy, NLTK, Stanza, CoreNLP, Syn-
taxNet ([1], Parsey Mc Parseface).

CoNLL-U9 is a widely used annotation format for dependency relations: Each
word is represented by 10 fields: ID, FORM, LEMMA, UPOS (universal PoS),
lang.specific PoS (XPOS), morphological features (FEATS), the HEAD word,
the dependency relation (DEPREL), head-dependency pairs (DEPS), any other
annotation (MISC). See the annotation example below.

# sent_id = 1

8 https://universaldependencies.org/u/dep/, e.g., the English UD Treebanks
https://universaldependencies.org/treebanks/en-comparison.html

9 https://universaldependencies.org/format.html
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# text = They buy and sell books.
1 They they PRON PRP Case=Nom|Number=Plur 2 nsubj 2:nsubj|4:nsubj _
2 buy buy VERB VBP Number=Plur|Person=3|Tense=Pres 0 root 0:root _
3 and and CONJ CC _ 4 cc 4:cc _
4 sell sell VERB VBP Number=Plur|Person=3|Tense=Pres 2 conj 0:root|2:conj _
5 books book NOUN NNS Number=Plur 2 obj 2:obj|4:obj SpaceAfter=No
6 . . PUNCT . _ 2 punct 2:punct _

2.10 NLP Task: Keyword/Key Phrase Extraction

Keyword or key phrase extraction has two Subtasks: candidate identification
and candidate ranking. While the former identifies a keyword or key phrase in
a document, the latter ranks the keywords/key phrases based on some statistics
or probabilities. Different approaches exist: TextRank [36] and Topicrank [7] are
graph-based approaches. Another example is YAKE! [12], a heuristic-/statistics-
based model which computes a combined heuristic score based on various statis-
tics on each word, and combines high-score adjacent words to phrases.

2.11 NLP Task: Named Entity Disambiguation (NERD)

Finding NEs is not enough! We also want to know what the NE refers to. For
instance, does the NE Vienna refer to Vienna in Austria, in Ontario, or in
Alabama, or is it the river Vienna running though Vienna in Austria, and so
forth. A an obvious possibility to distinguish NEs is by linking to some knowledge
base, e.g. Wikimedia, Wikidata.10 However, some NEs may refer to an entity not
in the KB, or several NEs may refer to different entities not in the KB. As a
remedy new unlinked concepts are clustered.

There are many different approaches to NERD, but with frequent common-
alities: Usually Entity Recognition (ER) is followed by Entity Disambiguation
(ED). There are also methods for doing ER and ED jointly [28]. To desambiguate
NEs you need to find semantic similarity between information about the entity
(e.g. a respective Wikipedia article text) and the context of the mention of the
NE in question. Moreover such features as a-priory likelihood or popularity of
each link are taken into account. Multiple entities in the proximity of an NE
should be compatible, i.e., belong to the same similarity space.

2.12 Evaluation

Evaluation is crucial in order to find out how good an NLP model is. Different
NLP tasks require different kinds of evaluation. In the following, we will look
into evaluation in NER, and discuss general issues in ML and NLP evaluation.

NER Evaluation NER evaluation basically comes in two variants: exact-match
evaluation and relaxed or lenient-match evaluation.

10 https://www.wikimedia.org/, https://www.wikidata.org/wiki/Wikidata:Main Page

Natural Language Processing. An Overview 90



16 B. Krenn, J. Petrak

Exact-match evaluation In exact-match evaluation, both NE boundary and NE
type must be correct to be correct to be counted. The following measures are
used:

Precision P covers how many of the found NEs are correct:
P = TP/(TP + FP )
Recall R covers how many of the actual NEs have been found:
R = TP/(TP + FN)
F1-score F1 is the harmonic mean of precision and recall:
F1 = 2(PR)/(P +R)
where TP:true positives, FP: false positives, FN: false negatives.

P, R and F1 are calculated by micro and macro averaging. Micro-averaged
means if there are several NE classes, average over all using TP, FN, FP. In
macro averaging TP, FN, FP are calculated per class, and the per class results
are averaged.

Relaxed/lenient-match evaluation NE type and (token-/character-) boundary
are Considered separately. Different evaluation approaches exist, for instance: In
MUC-6 evaluation [23] the type of the retrieved NE is considered as correct if
the predicted type overlaps with the type of the target NE (i.e., the NE type in
the test data). Independent of the NE type, the boundary of the retrieved NE is
considered as correct, if it matches the boundaries of the target NE. Doddington
et al. 2004 [18] propose ACE, complex scheme that is more flexible and powerful,
but less intuitive and more difficult to use for error analysis.

Area under curve (AUC) [6] is another method to evaluate true positives TP
versus false positives FP (AUC-ROC) or preision P versus recall R (AUC-PR) for
different probability thresholds and calculate the area under the receiver operat-
ing characteristic (ROC) curve. Depending on threshold more correct examples
may appear but also more wrong ones.

ML/NLP Evaluation What we really want to know in evaluation is the fol-
lowing: If we train a method to solve a certain task (e.g. NER) on a specific
training set, how well will it do on new data, i.e., what it the generalization
performance of a trained model. A single evaluation on some train/test split
does not tell very much: maybe we were lucky, maybe we used the right random
seed. To minimise this risk, we repeat our training and testing on several differ-
ent train/test splits and use e.g. (class-stratified) k-fold cross-validation instead
to get an average over the train/test runs and the related standard deviation.
Note: To properly compare different approaches or settings the standard devi-
ation needs to be checked, and significance tests should be performed in order
to make reliable statements about whether different approaches differ in their
performance. Unfortunately, many papers and leaderboards still neglect this and
just show bare numbers from a single train/test split. In addition to the quanti-
tative evaluation, a (qualitative error analysis) should be made, assessing which
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errors have been made, and how ”severe” or ”surprising” these errors for the
given NLP task are.

2.13 NLP Task: Text Classification

Text classification is an NLP task where predefined classes are assigned to open
ended free text, e.g.: sentiment or polarity classification where text is assigned
positive, negative or neutral sentiment. A typical application area for polarity
classification are movie reviews, see for instance the IMDBMovie Review Dataset
with 50K texts and related polarity information.11.

The following is needed for text classificaton: a sufficiently large training
corpus (e.g. IMDB Movie Review Dataset) annotated with the categories that
shall be assigned to new text, an ML algorithm and features to represent the
whole text corpus for the ML algorithm.

In order to represent a whole document as features for the ML algorithm the
following approaches are possible:

– use a single document vector: BoW vectors, LSI (Latent Semantic Indexing)
document vectors

– Use a single vector which is the average of all word vectors of the document
→ DAN

– Use list of word vectors: this requires an ML algorithm which can deal with
variable length imputs: CNN, RNN, LSTM

3 Machine Learning Algorithms

In this section, we introduce a number of ML algorithms that were/are relevant
for NLP. In doing so, we try to give an overview of how the field developed over
time.

3.1 Deep Averaging Network (DAN)

DAN are Simple deep networks that worked surprisingly well at the time [25].
DAN take the averaged sum of embeddings with optional word dropout (ran-
domly remove a certain number of words from the input) as their input. The
model has several (usually 2 or 3) hidden layers with dropout and a non-linearity,
like a Rectified Linear Unit (RELU) [22], or an Exponentional Linear Unit (ELU)
[15], and uses linear classification with the softmax function for the final layer.
The softmax function takes the values zi of the k-dimensional input vector and
normalizes it into a probability distribution of k probabilities so that those prob-
abilities are proportional to the exponentionals of the input values:

σ(z)i =
ezi

∑k
j=1 e

zj

11 https://paperswithcode.com/dataset/imdb-movie-reviews
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DANs have an obvious disadvantage: they are negligent of word order, as a
consequence syntax does not influence the input, e.g. negation cannot be han-
dled!

3.2 Convolutional Neural Network (CNN)

Kim 2014 [26] presents experiments with CNN for sentence classification built on
top of word2vec embeddings, which advanced the state-of-the-art amongst others
in sentiment and in question classification. The input to CNN are n embeddings
of dimension k (padded if text is shorter than n), whereby n depends on the
maximum size of the training or expected test set. The CNN model is simple,
comprising a convolutional layer with multiple filters, followed by max-pooling,
and a fully connected layer with dropout and softmax output.

3.3 Recurrent Neural Network (RNN)

RNN apply a (multi-layer) neural network (NN) to each input of a sequence,
e.g. from left to right. As RNN have loops, Figure 6 shows an unrolled RNN
for better illustration. In addition to the input, at each time step, we get the
hidden layer activations from the previous step and pass them on to the next
step. back-propagation ”through time” is applied. Advantages of RNN are that
they have no fixed sequence length, and they can be used for both classification
(use last output activations) and sequence labeling (use output activations for
each input). Disadvantages are, they have local optima and exploding/vanishing
gradients. Their inability to learn long distance dependencies, their effectiveness
for NLP is restricted, a drawback which was overcome by LSTMs.

Fig. 6. Recurrent network (unrolled); image from http://colah.github.io/posts/2015-
08-Understanding-LSTMs/.

3.4 Long short-term memory (LSTM)

LSTM networks add input/forget/ouput gates to control the information flow
[24]. See Figure 7 for illustration of an LSTM cell. Advantages of LSTMs are,
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they learn more complex and long-range patterns, and are less overfitting. Dis-
advantages are, they are more complex, and slower to train. A compatitive al-
ternative are GRU (Gated Recurrent Units, [13]). They have fewer gates and
fewer parameters, but often their performance equals LSTMs.

Fig. 7. LSTM cell; image fromWikipedia https://en.m.wikipedia.org/wiki/File:LSTM Cell.svg.

3.5 ELMO

ELMO stands for ”Embeddings from Language Models” [45]. The idea behind
is that embedding should depend on context, i.e., one and the same word should
have different embeddings depending on its context. The approach uses for-
ward+backward multi-layer LSTM to predict tokens simultaneously from left
and right context, thus, creating contextualized word embeddings. Lower layers
capture more syntactic properties, and upper layers more semantic properties.
Instead of just using the upper layer embeddings, create a weighted sum of the
embeddings from each layer and learn the weights that work best for a specific
task. Figure 8 illustrates the ELMO architecture. The language model (from
left) looks as follows: p(wk|wk−nwk−n+1 . . . wk−2wk−1
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Fig. 8. ELMO architecture; image from [17].

3.6 Transformers

Transformers are encoder-decoder sequence-to-sequence models and were first in-
troduced by Vasvani et al. 2017 [58]. Instead of RNN/CNN use a feed-forward ar-
chitecture with ”multi-head self attention”. A Transformer model comprises One
feed-forward ”column” per token, horizontally interconnected via self-attention.
See Figure 9 for the model architecture representing a single column.

Transformers: Tokenization and Inputs What is a technically good input?
Per-wordform tokens are large in number, some wordforms very rare, and internal
word structure is ignored. Per-byte tokens are small in number, but it is hard for
the model to learn meaningful representations for this kind of tokens. Therefore,
sub-word tokenization has been introduced as a compromise.

Subword Tokenization A number of approaches for subword tokenization have
been proposed: Sennrich et al. 2026 [51] introduced Byte-Pair Encoding BPE,
i.e., start with a base vocabulary (unicode, byte) from a list of unique words,
merge the tokens according to frequency to create new tokens from the base
tokens, add new tokens and repeat. BPE also learns merge rules for splitting
unseen words. The tokenizer must be trained based on the full training set vo-
cabulary. WordPiece [50] is another approach. It is similar to BPE, but uses a
different merge criterion.

Kudo 2018 introduces Unigram [30] which is initialized with a large vocabu-
lary of words, substrings and characters, and is progressively trimmed to reduce
the vocabulary size. Unigram is not used on its own but together with Senten-
cePiece. SentencePiece is introduced by Kudo and Richardson 2018 [31] as a
method for subword tokenization which is better suited for languages that do
not separate words by spaces. SentencePiece treats the text input as a stream,
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Fig. 9. Transformer model architecture (single column); image from
https://de.wikipedia.org/wiki/Transformer %28Maschinelles Lernen%29.
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whitespace is seen as an ordinary character. Detokenization is used to reconstruct
the original string including whitespace from subwords.

Transformers: Self-Attention and Multi-head Self Attention Attention
was used before Transformers e.g. in seq2seq LSTMs: depending on input, use
representation from different states differently by learning weights for combining
them. With the introduction of the Transformer architecture [58] attention be-
came everything you needed. In each layer of the Transformer the representation
is a weighted sum of all value vectors in all columns. The weight is calculated
from the similarity between query vector of the current column, and the key
vectors of all columns. Query, key, value vectors are calculated from the current
layer input via trainable matrices. See Figure 10 for an illustration of Trans-
former self-attention.

Fig. 10. Transformer self-attention; image from [11].

Given the inputs xi (each input is an embedding of some dimension d, three
kinds of vectors are calculated by multiplying the input embeddings with a ma-
trix of learned weights: a query vector using a matrix Q: qi = xiQ, a key vector
using a matrix K: ki = xiK and a value vector using a matrix V : vj = xiV .
For each combination of input locations i and j, the an attention weight aij
is calculated as the dot product between qi and kj : aij = qik

⊤
j . These weights
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are then scaled by dividing through the square root of the vector dimensional-
ity producing wij and normalized by passing them through a softmax function
producing sij

wij = aij/
√

(d)

sij =
exp(wij)∑n

j′=1 exp(wij′)

These values are then used to calculate the output value as the weighted sum
of all value vectors using the normalized dot products as weights.

oi =
∑

j

sijvj

The contribution of each value vector to the output at some position i thus
depends on the similarity between the query vector of position i and the key
vector corresponding to the position of the value vector.

The actual calculation is performed using more efficient matrix multiplication
and in transformer models several attention heads (multi-headed attention) are
calculated in parallel with different learned weight matrices, in order to provide
more flexibility to focus on different kinds of influencing positions at the same
time.

Transformers: Encoding

Positional Encoding Since the result of self-attention is just a weighted sum,
there is no way to find out where each value comes from. Therefore, position
embeddings PE are added to the input embeddings, where each dimension of the
position embedding contains the value of a sine / cosine function that depends
on position and dimension. For offset k, PEpos+k can be calculated as a linear
function of PEpos

Full Encoder is characterised as follows: Each column has input embeddings+positional
embeddings, followed by multiple layers, each of which has: multi-head atten-
tion, layer normalization per column (norm), residual connection adding the
input of the layer to the output (add), feed-forward dense layer with add+norm,
per-column nonlinearity (ReLU) and dropout per sub-layer.

3.7 Bidirectional Encoder Representations from Transformers
(BERT)

BERT [16] uses the Transformer encoder only. BERT is designed to solve many
different NLP tasks. The first token is always a special classification token CLS,

Natural Language Processing. An Overview 98



24 B. Krenn, J. Petrak

i.e., the first column is especially reserved for classification. Segment embeddings
are added in addition to positional embeddings which allows to deal with several
segments/sentences of text. The model gets pre-trained on large amounts of text.
There are different BERT models, see for instance BERT Base cased/uncased
with 12 layers, 768 hidden, 12 attention heads, 110M parms, or BERT Large
cased/uncased with 24 layers, 1024 hidden, 12 attention heads, 340M parms,
just to mention the two fundamental ones.

3.8 BERT: Pre-training and Fine-tuning / Downstream Tasks

Pre-training BERT pre-training has two tasks: creating a masked language
model LM and doing next sentence prediction.

Masked Language Model (MLM) The goal is to mask a word/token in the input
and try to predict it from the context (actually use MASK 80%, random token
10%, unchanged token 10%), only use masked tokens for the loss function. For
this a classification head with a dense layer and softmax is added on top of all
columns except the CLS column.

Next Sentence Prediction Input are two sentences separated by a special SEP
token. Additional segment embeddings encode which tokens belong to which
sentence. A binary classification tasks decides whether the 2nd sentence would
follow the 1st one or not. For this a classification head with a dense layer and
softmax is added on top of the CLS column.

Fine-tuning Fine-tuning means to load a pre-trained model, add appropriate
head(s) and train on new data. The LM layers can be ”frozen”, i.e., their weights
are NOT adapted to the new data, have adapted learning rate or just get fully
trained. Fine-tuning is used ot adjust the Transformer model to downstream
tasks, e.g., specific classification tasks such as sentiment identification or the
identification of sexist utterances, hate speech etc. See Figure 11 for a comparison
of pre-training and fine-tunig. See the next paragraph for a few more words on
downstream tasks.

Downstream Tasks We distinguish different classes of downstream tasks.
Many subtasks can be based on these:

– Sequence tagging: per-column classification head over label set (POS tags,
IOB codes), optionally followed by a CRF layer.

– Classification: add a single dense layer after the output of the CLS column,
followed by softmax.

– Question answer identification: find start/end token of answer for a question
in context: softmax over all context token column outputs after dot product
with start / end vectors.

– Get contextual word vectors: just forward the text and use the column out-
puts.
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Fig. 11. BERT pre-training versus fine-tuning; image from [17].

3.9 BERT: Zero Shot Classification

Zero shot classification is an approach where the knowledge stored in the BERT
language model from being pre-trained on a large text corpus is used to solve spe-
cific classification tasks without any additional training on a trainingset specific
to that task. For a given task, the model should be used to assign one of several
classification labels to some text. For example, given a comment, assign a label
to describe the sentiment of the comment as ”positive”, ”negative” or ”neutral”.
There are several possible approaches to do this, one that is commonly used is to
treat the classification as a natural language inference problem where the model
is presented with two sentences and has to decide if the second sentence follows
from the first. The text can then be presented as the first sentence and each
of the candidate labels, possibly as part of a template like ”this text expresses
a [LABEL] sentiment” as the second sentence and the classification is done by
picking the label where the probability for the second sentence to follow from
the first one is highest.

Alternately the text and label can be combined to a sentence forming a
hypothesis sentence (e.g. ”[TEXT] expresses a [LABEL] sentiment” and the
language model probability of each of the labels in the context of the template
can be used to determine the most likely classification.

3.10 Transformer Encoder-Decoder

The original Transformer has both encoder and decoder, and was intended for
Machine Translation MT. For MT, a seq2seq model is required which takes an
input sequence of tokens from the source language and generate a corresponding
output sequence of tokens from the target language. Before the introduction of
the Transformer architecture, this has been done using e.g. LSTMs. The decoder
is similar to the encoder, but adds another masked multi-head attention where
only previous positions get attended to. The decoder outputs one token at at
time. To generate the next output token, the token sequence generated so far
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(or the special start of sentence token SOS) gets fed to the input right shifted
which is called causal autoregressive text generation. The output embedding
goes through softmax to generate the token probabilities. Rather than always
using the most probable token, use beam search to find better (higher overall
probability) combinations of tokens. Stop when the end of sentence (EOS) token
is the most probable output. Figure 12 illustrates the encoder-decoder process.

Fig. 12. Transformer encoder-decoder; image from https://kikaben.com/transformers-
encoder-decoder/.

3.11 Decoder only transformer: GPT-x

Radford et al. 2018 [46] propose generative pre-training GPT. They use the
Transformer decoder to pre-train a language model, and then use fine-tuning
on textual entailment, similarity, question answering, commonsense reasoning.
Their proposed model had 12 layers, 768 dimensions, 12 attention heads, 3072
hidden nodes for feed forward, and a context size of 512 tokens. See Figure 13
for an illustration of the GPT architecture. BPE is used for tokenization. Since
its introduction GPT has made tremendous progress in terms of model size and
capabilities, and at the same time has become more and more sealed off. See for
instance:

– GPT-2 [47] is comparable to GPT with small modifications comprising the
layer norm at beginning of a sub-block, the final normalization after atten-
tion, and the context size is now 1024 tokens.

– GTP-3 [10] is like GPT-2, but with alternating dense and sparse attention
patterns in the layers. The model has 96 layers, 12288 dimensions, 96 atten-
tion heads, and a context window of 2048 tokens. A 3.2M batch size, 175B
parameters, no fine-tuning of the base model, and is pre-trained on 500B
tokens of text (93% English). It shows remarkable zero-shot capabilities. It
is a Large Language Model (LLM), meaning the model itself is huge and it
is trained on a huge dataset.

– GPT-3.5 is the model where no accessible scientific papers exist. Overall,
fewer information is provided from OpenAI on this model. GPT-3.5 is based
on GPT-3, fine-tuned and improved using Reinforcement Learning from Hu-
man Feedback (RLHF). Several versions with different properties exist (con-
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text size 4k-16k, 1.3B-175B parmeters not publicised at the time of model
publication.12

– GPT-4 [42] is a multimodal (text and image inputs) model. It is trained on
both publicly available and licensed data, with a context size of 32k tokens.
The model is fine-tuned on multiple tasks, again RLHF is used to improve
the model’s output behaviour. No further details are given about the model
architecture, including the model size. Parameters are unknown, however,
estimated to be around 1T.

Fig. 13. GPT Decoder-only model; image from [46].

3.12 Reinforcement Learning from Human Feedback (RLHF)

RLHF is important for LLMs as it adjusts the model according to human feed-
back and, thus, makes it more relevant. The RLHF process is as folows: Start
with a pre-trained language model and optionally fine-tune it on a variety of
tasks. Then gather many (task-specific) prompts (e.g. from deployed LM users)
and generate responses from current and possibly also other LMs. Human anno-
tators order responses in order of preference, and generate a score using methods
that are similar to the Elo [19] or similar rating systems used in tournament chess
(the method calculates an overall quality score based on pairwise comparisons).
Next, a scoring model is trained on the prompt/response + score data. Use e.g.
Proximal Policy Optimization (PPO) (or NLPO, A2C, ..) with a copy of the LM
to tune some or all of its parameters, see https://huggingface.co/blog/deep-rl-
ppo.

12 In the meantime there is an extended list with newer models, cf.
https://platform.openai.com/docs/models/gpt-3-5-turbo.
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3.13 Other LLMs

The number of pre-trained LLMs, both with and without fine-tuning (FT) or
RLHF grows rapidly. While recent models from OpenAI or Google are closed
and restricted (CS/R), open source (OS) models start to appear on the scene
(it is open to debate though what conditions must be satisfied to make a model
open source: is it sufficient if the model weights and the code to use the model
is available with an open-source license, should all the code that was used for
training be available as well, should all the data used for training and tuning be
available etc.)

In the following, we list a number of models, being aware that such lists age
very quickly:

– PaLM/PaLM2 [14], [2]: (8B-)540B parameters, 118 Layers, 48 heads, 18432
dimensions, trained on 780B token corpus (123 languages, 78% EN, 24 pro-
gramming languages). PROPRIETORY

– LLaMA [56] and many others derived from it, 7B-65B parmeters, 64 heads,
8192 dimensions, 80 layers, trained on 1.4T tokens (unknown language dis-
tribution). OS

– BLOOM [49]: 176B parmeters, Responsible AI License (RAIL), ROOTS cor-
pus (1.6TB, 46 languages, 13 programming languages, 70% non-English).
OS

– GALACTICA [53]: Intended for scientific knowledge. Public demo showed
hallucinations (i.e., inventing competent sounding stuff which is ) got pulled
off. The modle is trained on papers, code, KBs, .. 106B tokens. 125M-120B
parmeters, 96 layers, 10240 dimensions, 80 heads.

– Falcon [43]: improves the pre-training data by filtering and deduplicating, a
600B token subset of the 5000B token set for training is open-sourced. The
model comes in two versions, a larger one with 40B parameters and a smaller
one with 7B parmeters. FT versions are available, OS

– Sparrow [21]: RLHF for different aspects of being capable of ”good dialogue”.
The modle has 70B parmeters, and can lookup information. CS/R

– LaMDA [54]: The model has up to 137B parameters, and 64 layers. It is
trained on documents, dialogs, 1.5T tokens (¿ 90% English). It allows to
query knowledge sources, a translator, and a calculator.

– Apart from the models listed above, there are many more and their numbe
ris rapidly growing.

3.14 LLMs and LLM-based NLP: (some) Advantages and Issues

In the following, we will list some major advantages of and issues with LLMs
and LLM-based NLP. The pros are marked with +, the cons with -.

+ Huge pre-training improves overall performance on many tasks.
+ Capable of solving many tasks with the same or just slightly modified model

(zero/few-shot).
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+ Capable of resolving common ambiguities, e.g. Winograd Schema Challenge
[27].

- ”Hallucinations”: Today’s LLMs are prone to producing competent-sounding
nonsense. This is a variation of previously often-seen (catastrophic) failure
modes with ML, especially with DNNs.

- Hard to control bias, performance and bias depends on selection of TB of
data.

- As with most ML-based approaches: The modle does not know what it does
not know.

- As with most DNN-based ML approaches: missing model explainability.
- Currently: not easily accessible (effort in hardware, data, know-how). We
depend on large-player models, APIs and solutions.

Pre-training Corpora Another issue relates to the corpora used for pre-training
LLMs. Mostly ”accessible” data is used such as web crawls, wikipedia, fan-fiction,
etc. Most good data, however, is restricted as it is copyrighted, licensed, hid-
den, not digital, etc. There is an imbalance on topics which have freely available
text, e.g., computer science versus social sciences, which obviously influences the
knowledge of an LLM. Moreover, there is a huge imbalance on the availability
and usage of data in non-English languages. which is even worse for low-resource
languages, local idioms and dialects. As Falcon has shown, cleaning and filtering
data already improves the LLM (cf. the description if the Falcon model above).
There is also a huge problem of opinionated texts, propaganda, religions, ide-
ologies which enter LLMs through their training data, and there is a problem
of time: Facts often relate to a time span (e.g., who is the US president), new
facts need to get constantly added, and data may become obsolete, out-dated
and wrong over time. All this leads the the need for models being capable both
of life-long learning and of steerable forgetting (as opposed to current uncontrol-
lable catastrophic forgetting).

4 Corpus Annotation

Almost all the tasks we discussed in the course of this chapter need training
material. For supervised learning, human annotation is needed, e.g., What is the
POS tag of a word? What is a Named Entity in a sentence and which entry
in the knowledge base does it refer to? Does sentence A entail sentence B? Is
that text misogynist? Does this tweet contain hate speech, directed at whom?
Is this a good and factually correct answer to a chat question?, and so forth.
For unsupervised pre-training, on the contrary, we need large amounts of quality
documents across many different languages, domains and writing styles.

4.1 Numerical Evaluation of Human Annotation Quality

Quality annotations are created by at least 2 independent (expert) annotators
who are trained on task-specific annotation guidelines. Cases of disagreement
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are resolved by mutual agreement, a third annotator, or by majority voting if
there are more than 2 annotators. This concept of quality annotation requires a
single truth which, however, does not exist in many real-world cases, e.g., what
is considered misogynist, in which context, by whom, to which extent.

Measuring Inter-annotator Agreement/Reliability Inter-annotator agree-
ment (IAA) assesses the agreement among individual annotators on an annota-
tion task. IAA reflects how likely the annotators are to achieve the same annota-
tion results using the same guidelines. Both the proficiency of the annotators and
the quality of annotation guidelines have an effect on IAA. There is a number
of measures for assessing IAA, ranging from simple (e.g., percent-agreement) to
rather complex measures (e.g., Krippendorff’ Alpha).

Percent agreement is the number of annotations agreed upon divided by the
number of annotations in total. With 2 annotators annotating all data of the
same dataset. As percent agreement does not account for chance agreement,
the amount of true agreement may be overestimated. Moreover, there is no
consensus on the significance of the numeric result in the research community,
so the numbers are hard to interpret.

Krippendorff’s Alpha is a complex measure, allowing for any number of annota-
tors. There is no precondition that all data must be annotated by each annotator,
and the measure minimizes the effect of chance. This leads to a better general
interpretability of the numeric results, e.g., a Krippendorff’s Alpha of > 0.9 is
generally acceptable, > 0.8 shows fair reliability, and > 0.7 is tolerable (cf. [41].

More Reasons for Differing Data Quality Data quality heavily effects
model quality: The model my be noisy because of bad data quality, e.g., low-
paid workers annotating huge amounts of data, non-expert annotators do the
annotations. Do the data reflect a bandwidth of (task-relevant) views, opinions,
conceptions? Different groups of annotators may introduce very different biases,
e.g. with culturally differing concepts as obscenity, offensiveness, sexism. There
is a trade-off between employing diverse groups of annotators covering differ-
ent opinions, however, at the cost low IAA versus employing more homogenous
groups of annotators with a fair chance to reach higher levels of IAA but with
a risk of potentially putting a too restricted lens on the data. There is also an
ethical component in data annotation, i.e., the expected model output defines
which data are collected and how they are annotated. Therefore, transparency
of the data acquisition, data cleaning and annotation processes is required, e.g.,
datasheets for datasets [20], model cards [39].

Another issue is, for which languages is effort of extensive data collection and
annotation invested? Here English surpasses all other languages. For which topics
and tasks are datasets created? What about the life of a datset after annotation?
On the one hand we want static corpora for ML evaluation and comparison. On
the other hand we want to correct mistakes, improve and update the dataset,
not to forget the obligation to change the dataset, e.g. to remove deleted tweets.
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Dealing with Annotator Disagreement As already said, the usual view on
annotated data is that there is one true label, and annotator disagreement is a
sign of error (noise). The usual disambiguation strategy is to use the majority
label, to let an expert meta annotator decide, or to get additional annotations
and chose the majority label. For many complex concepts, however, there is no
definite single true label. Therefore, we need to think about alternatives to the
current one-true-label concept.

An alternative is to work with soft-labels, i.e., get a label distribution p(y|x)
which the model should learn. Uma et al. 2021 or Leonardelli et al. 2023 [57], [33]
propose learning with disagreements. Others perform model calibration [38] to
human uncertainty [3]. These approaches also need different evaluation scores,
e.g., cross-entropy, correlation, KL-divergence. There are similar issues with ma-
chine translation, i.e., which of the many translations for a text are accept-
able/correct, and what is a good amount of variation between them? A major
problem is the low number of annotator labels which may not reflect the popu-
lation distribution.

5 Opinionated Short List of Related NLP Tools

The following is a list of NLP tools we consider useful for everybody which plans
to build NLP applications. (P, J and C stand for the following programming
languages P=Python, J=Java, C=C/C++):

– Huggingface13 (P): transformer-related code, model-zoo, data
– Pytorch14 (P): Deep Learning Library
– Spacy15 (P), Stanza16 (P), CoreNLP17 (J): pipeline-based NLP, models for

several languages
– Online services: GoogleNLP18, Perspective19, ELG20

– GateNLP21 (P): integrates most of the above, good abstractions
– Gensim22 (P), fastText23 (C+P), AllenNLP24 (P), FLAIR25 (P)
– Label-studio26, Teamware27, Amazon Mechanical Turk28: human annotation

13 https://huggingface.co/
14 https://pytorch.org/
15 https://spacy.io/
16 https://stanfordnlp.github.io/stanza/
17 https://stanfordnlp.github.io/CoreNLP/
18 https://cloud.google.com/natural-language
19 https://perspectiveapi.com/
20 https://live.european-language-grid.eu/
21 https://gatenlp.github.io/python-gatenlp/
22 https://radimrehurek.com/gensim/
23 https://fasttext.cc/
24 https://allenai.org/allennlp
25 https://flairnlp.github.io/
26 https://labelstud.io/
27 https://gatenlp.github.io/gate-teamware/development/
28 https://www.mturk.com/
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– Scipy29, Scikit-Learn30: lower level Python packages

6 Outlook

The main progress in NLP obviously lies in highly contextualized representations
through massive pre-training, leading to large improvements in the performance
on traditional tasks and impressive new systems like conversational AI. These
developments make understanding and researching the following aspects more
and more important:

– Knowing not to know
– Explanation of results on both the domain and model level
– How to evaluate models trained on a huge area of topics, facts, knowledge?
– How to make models and research more democratic: who can afford to train

a 1T parameters model?
– How to deal with opinions, ideologies, disagreement, emotions represented

in those models?
– Representation grounding: link concepts to images, videos, sensory data,

robot-actions

We hope this chapter has helped to give you an idea of how NLP/ML research
has developed over time and how NLP/ML research has become more interesting
than ever! Enjoy!
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nay, J., Mitchell, M., Raffel, C., Gokaslan, A., Simhi, A., Soroa, A., Aji, A.F.,
Alfassy, A., Rogers, A., Nitzav, A.K., Xu, C., Mou, C., Emezue, C., Klamm,
C., Leong, C., van Strien, D., Adelani, D.I., Radev, D., Ponferrada, E.G., Lev-
kovizh, E., Kim, E., Natan, E.B., Toni, F.D., Dupont, G., Kruszewski, G., Pistilli,
G., Elsahar, H., Benyamina, H., Tran, H., Yu, I., Abdulmumin, I., Johnson, I.,
Gonzalez-Dios, I., de la Rosa, J., Chim, J., Dodge, J., Zhu, J., Chang, J., Fro-
hberg, J., Tobing, J., Bhattacharjee, J., Almubarak, K., Chen, K., Lo, K., Werra,
L.V., Weber, L., Phan, L., allal, L.B., Tanguy, L., Dey, M., Muñoz, M.R., Masoud,
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Deep Learning

Günter Klambauer

Abstract. Over the last decade, machine learning and Deep Learning
methods have paved their way into all kinds of computational task for
molecules. The molecular machine learning research community has made
strong progress in a) activity and property prediction, b) representation
learning and molecular modeling, c) chemical synthesis and reaction pre-
diction, and d) generative models for molecules. In this talk, we provide an
overview over the main deep architectures, such as fully-connected, convo-
lutional, RNN and Transformer architectures. We also provide a perspec-
tive of the recent progress in molecular machine learning, on the essential
properties that our AIs should have to make a difference, and steps to-
wards such broad AIs.

Reinforcement Learning

Clemens Heitzinger

Abstract. Reinforcement learning is the type of machine learning where
an agent interacts with an environment, receives rewards, and learns poli-
cies that maximize the sum of all rewards. It is a general concept with
many applications, e.g. in decision making, robotics, gaming, and medicine.
Reinforcement-learning methods solved Go and power ChatGPT. The lec-
ture starts with an introduction to reinforcement learning and its classical
algorithms. Then recent techniques such as deep reinforcement learning
and distributional reinforcement learning are discussed, as well as the use
of reinforcement learning in large language models. Finally, applications
are presented.

Brain-Inspired Computation and Learning

Robert Legenstein

Abstract. The quest of Artificial Intelligence research is to build arte-
facts that mimic the cognitive capabilities of the human brain. Starting
with the McCulloch-Pitts neuron exactly 80 years ago, the brain has al-
ways provided inspiration for systems and algorithms in AI research. In
this tutorial, I will ask the question how AI research we can make use
of our knowledge about the brain. I will discuss the current knowledge
about the organisation of computations in brain. Next, I will present ef-
forts that attempt to model such computations and how these models give
rise to new machine learning approaches. One immediate application of
this research is ’neuromorphic’ hardware, that is, hardware that imple-
ments computation and learning based on principles borrowed from the
brain. I will discuss the advantages and challenges of such neuromorphic
systems.


